
42 The Delphi Magazine Issue 95

Shared Pools
And I ain’t talking about summer
and swimsuits there...

by Primoz Gabrijelcic

Welcome to the fourth instal-
ment of this occasional

series dealing with interprocess
communication, data sharing,
Windows NT security and other
obscure topics.

For my new readers, and others
who want to refresh their memory,
a quick recap. In previous articles
I’ve covered some basic synchroni-
sation primitives (Issue 86), pre-
sented an intelligent shared
memory class (Issue 88), and cov-
ered some NT security issues
(Issue 91).

This article builds mostly on the
second part (shared memory).
Actually, it was meant to be the
third part in the series, but then
things went wrong and the code
was not working and, well, if you
have read the article in Issue 91
you already know all that. But now
the bugs are removed and the
shared pool is working as good as it
should (which may not be as good
as it could, but that is for you to fix,
if you accept the task).

As powerful as the shared
memory implementation from
Issue 88 is, it still doesn’t solve all
the problems Windows puts in our
path. Sometimes using shared
memory is still a non-trivial thing.
Sometimes we run into problems
because of a Windows feature, and
most of the time this is a very good
feature, that a file mapping (an
essential part of my shared
memory implementation) cannot
exist on its own. A file mapping, like
mutexes, events, and other Win-
dows primitives, must have an
owner. If all processes associated
with a given file mapping die, the
file mapping will be destroyed.
Because in my shared memory
implementation this file mapping is
backed with a page file, its con-
tents won’t be preserved on an
accessible part of the disk. In other

words, the shared memory con-
tents will be lost.

As I’ve already said, this is usu-
ally ‘a good thing’. When a process
dies unexpectedly, we expect the
Good Operating System to clean up
behind it. That includes destroying
unused file mappings.

So why does this present a prob-
lem? Let’s say we have a client-
server application (running on one
computer, of course, or shared
memory wouldn’t be of much sig-
nificance). Clients are generating
data and the server is processing
it. The clients are delivering data
in large chunks. In that scenario,
shared memory can be used to
transfer data from the client to the
server. However, there are
difficulties.

Due to the requirement we men-
tioned before, at all times some-
body must own the shared
memory buffers carrying the data.
From the client’s viewpoint, that
means that it must keep the shared
memory open until the server
receives it. If the server only sends
this confirmation when the shared
memory buffer is processed (and
that may take a while as there may
be other buffers from other clients
waiting), things may get compli-
cated, for the server and also for
the clients.

To simplify the programming, I
have encapsulated the required
client-server protocols into the
shared memory pool class (or, I
should say, classes). You can
therefore concentrate on the
server and client sides and the
shared memory pool will bring
data safely from the clients to the
server.

Architecture
Having said all that, it is not sur-
prising to know that the shared
memory pool is also designed in a
client-server manner.

One server object (called a
Reader because it processes the
data) manages (allocates, frees)
memory buffers in the pool and
owns them at all times. Clients
(Writers) can only acquire a
pre-allocated buffer from this
server, write the data into the
buffer and return it for processing.

Both Reader and Writer derive
from the same base class,
TGpBaseSharedPool (see Figure 1).
This class is quite large as it imple-
ments most of the Writer function-
ality. Reader is implemented in the
TGpSharedPoolReader class and
Writer in the TGpSharedPoolWriter
class. Both end classes, Reader and
Writer, use a message queue
object (TGpMessageQueueReader/
Writer) to pass messages safely
over the OS-provided boundaries
(see Issue 91 for more detail).

Pool administration, global
values, the list of allocated buffers
and so on is separated into a
special class TGpSharedPoolIndex,

➤ Figure 1: Shared pool
architecture.

July 2003 The Delphi Magazine 43

which owns two shared memory
objects, one holding the pool
header (global values) and another
the pool directory (the list of
allocated buffers).

For better adaptability, the pool
is resizable. Reader starts with
some buffers pre-allocated and
then adjusts the number of buffers
according to usage dynamics and
programmer-specified boundary
values. When the number of free
buffers drops below some limit,
Reader allocates more buffers (up
to some preset maximum number).
When the number of unused buff-
ers grows, Reader will free them.
Buffers may also be allocated on
request, when a Writer needs a
buffer and there is none available,
it will ask the Reader to kindly pro-
vide another buffer if possible. In
that case the new buffer will be
allocated immediately.

The header is internally repre-
sented by the TGpSharedPoolHeader
structure (Listing 1), which is
stored in the shared memory
object. The code accesses the
header shared memory when
required, aliases a PGpSharedPool-
Header pointer to the shared
memory data and works with the
members directly.

As you can see from the code,
the header is divided into three
parts: static members, dynamic
members and list headers. I’ll
cover the list headers later, and
dynamic members are trivial, but
the static part deserves to be
described in more detail.

The first member (sphSignature)
contains a special number which
the TGpSharedPoolIndex uses as a
safety check, to prevent it from
accidentally connecting to some
other shared memory owned by an
unrelated application that just
happens to have the ‘right’ name.
The second member is a header
version, currently always 1. If the

header is extended with additional
members in some future release,
this version will be incremented.

The next seven members, from
sphInitialBufferSize to sphResi-
zeThreshold, contain a copy of the
programmer initialisation parame-
ters provided by the programmer,
passed to the Reader’s Initialize
method. We’ll cover those later.

The last three static members
are probably the most interesting.
The sphOwnersToken holds a
Reader’s token (unique name, see
Issue 86), which is used to generate
shared memory buffer names and
to detect whether the server has
been restarted. Next, sphIndex-
EntrySize holds the size of one
entry in the pool directory and
sphNumEntries holds the total
number of entries in the same
directory.

The reason for the sphIndexEnt-
rySize may not be obvious at first
glance. After all, the code knows
how big the entry is. That is only
partially true: the Reader, which
created the header, knows how big
this entry is. The Writer, on the
other hand, may run the older ver-
sion of the pool software when the
index entry was smaller. Thus,
storing the entry size in the header
allows all clients to reliably access
any entry in the directory.

The directory is a shared
memory object containing array of
entries of type TGpSharedPool-
IndexEntry (Listing 2). There are
sphNumEntries entries in the direc-
tory. That also means that at most
sphNumEntries buffers can partici-
pate in the pool.

The spieStatus member holds
the status of this entry (and the
associated memory buffer). It can
either be free (the memory buffer
is allocated but doesn’t hold any
data), allocated (the memory
buffer is acquired by a Writer),
queued (the memory buffer was
submitted to the Reader for pro-
cessing), or disposed (the memory
buffer is not allocated).

The spieReleasedAt keeps the
time when the buffer was released.
This is used when the ‘sweeper’
(described later) shrinks the pool.

The next two members, spie-
Previous and spieNext, link this
entry to the previous and next
entries with the same status. The
first and last entries in this doubly
linked list have its spiePrevious
(spieNext) member set to -1 to
indicate the end of the list.

Lastly, the spieHandle member
holds the handle of the shared
memory buffer (when the buffer is
allocated). This handle has mean-
ing only inside the Reader’s
process.

Now the meaning of ‘list header’
header members becomes clear:
they hold the index of the first
entry in the free/queued/disposed

TGpSharedPoolHeader = packed record
//static
sphSignature : int64; // "magic" signature
sphVersion : cardinal; // version; currently always 1
sphInitialBufferSize: cardinal; // initial size of shared memory buffers
sphMaxBufferSize : cardinal; // maximum size of shared memory buffers
sphMinBuffers : cardinal; // minimum number of memory buffers
sphMaxBuffers : cardinal; // maximum number of memory buffers
sphSweepTimeoutSec : cardinal; // number of seconds buffer must be left

untouched before it is disposed
sphResizeIncrement : cardinal; // number of buffers to be allocated when

resizing
sphResizeThreshold : cardinal; // number of free buffers when resize

should be triggered
sphOwnersToken : array [0..263] of char; // name of the owner's token;

used to generate shared memory buffer names
sphIndexEntrySize : cardinal; // size of the index entry
sphNumEntries : cardinal; // number of entries in the directory

//dynamic
sphNumBuffers : cardinal; // number of memory buffers
sphFreeBuffers : cardinal; // number of free memory buffers

//list headers
sphFreeList : cardinal; // index of the last used free entry
sphQueuedList : cardinal; // index of the first queue entry
sphDisposedList : cardinal; // index of the first disposed entry

end; { TGpSharedPoolHeader }

➤ Listing 1: Shared pool header.

TGpSharedPoolIndexEntry = packed record
spieStatus : integer; // status (free, allocated, queued, disposed)
spieReleasedAt: TDateTime; // time then buffer was released

//links
spiePrevious : cardinal; // link to previous entry with the same status
spieNext : cardinal; // link to next entry with the same status

//internals
spieHandle : TGpSharedMemory; // pointer to shared memory buffer on *reader*

end; { TGpSharedPoolIndexEntry }

➤ Listing 2: Directory entry.

44 The Delphi Magazine Issue 95

lists. There is no sphAllocateList
member because ‘allocated’
entries are not connected into a
list. When an entry is allocated, it is
removed from the lists and is in
complete control of the Writer
which owns it.

Creation
Although a Writer can be created
before the Reader it cannot do
much useful work alone, because it
can’t acquire a memory buffer. The
reason for that is obvious: the
Reader creates and owns memory
buffers, if there is no Reader, there
are no buffers. The Writer merely
creates a TGpMessageQueueWriter
(which it will later use to signal its
needs to the Reader) and the
shared index object (but it will not
initialise the header).

The Reader doesn’t do much
more during the object creation, it
will create some communication
objects and the shared index
object (again, uninitialised). Only
when the code calls the Initialize
method (Listing 3) does the Reader
spring into life.

As you can see, there are lots of
configuration parameters, but only
four must be provided. The first
two, initialBufferSize and maxBu-
fferSize, regulate the initial and
maximum size for the managed
memory buffers. (Shared memory

objects are either resizable, in
which case initial and maximum
size must be larger then zero, or
fixed, when the initial size is posi-
tive and the maximum size is zero.
For more information see Issue 88.)

The next two parameters regu-
late the initial and maximum
numbers of memory buffers in the
pool. I have no idea what problem
you’re solving and what numbers
to put in there. I would only sug-
gest that you don’t set the maxi-
mum number too low, as unused
memory buffers don’t take much
space, and that you set the initial
number of buffers to a non-zero
value (mostly because this number
is also used for various resize
defaults).

The other four parameters are
optional. The first two regulate the
pool growth. Additional buffers are
allocated if the number of free buff-
ers falls below the resizeThreshold
value. If not set, this value is calcu-
lated automatically with a quite
convoluted formula (if you just
have to know, see TGpSharedPool-
Index.Initialize). The next
parameter (resizeIncrement) spec-
ifies how many additional buffers
are allocated in such a case (of
course, the total number of buffers
will never grow above the
maxBufferSize). This value defaults
to startNumBuffers. The third
parameter (minNumBuffers) repre-
sents the minimal allowed number
of buffers in the pool. Leaving it at

the default means that the number
of allocated buffers will never fall
below startNumBuffers.

The last parameter, sweepTime-
outSec, is an interval between con-
secutive passes of the ‘sweeper’,
the part of the code that checks
the pool and frees buffers that
were not used for a long time (the
default is 15 seconds).

Besides that, the initialization
code also creates a mutex (to tell
the world the server is alive) and a
TGpMessageQueueReader to receive
the Writer’s commands and data.

Acquiring A Buffer
To acquire a buffer, Writer calls
the AcquireBuffer method, which
takes one parameter, timeout. If
the request cannot be completed
inside this limit (specified in milli-
seconds, but you can also use the
constant INFINITE), the function
will return nil. There are other
cases where the AcquireBuffer can
fail, so you should always check
the error code (it is stored in the
LastErrorproperty). If the function
succeeds, it will return the
TGpSharedMemory object into which
you can put the data (see Issue 88
for more details).

AcquireBuffer actually only calls
the InternalAcquireBuffer (Listing
4) and tells it to acquire the index
object. The first thing the internal
version does is exactly that, it will
acquire the index. This may fail if
the index is not initialised
(because the Reader has not been
started yet) or if the index is initial-
ised but the Reader is not alive (the

function TGpSharedMemoryReader.Initialize(initialBufferSize, maxBufferSize,
startNumBuffers, maxNumBuffers: cardinal; resizeIncrement: cardinal =
CDefResizeIncrement; resizeThreshold: cardinal = CDefResizeThreshold;
minNumBuffers: cardinal = CDefMinNumBuffers; sweepTimeoutSec: cardinal =
CDefSweepTimeoutSec): boolean;

➤ Listing 3: Signature of the
Reader's initialization method.

function TGpBaseSharedPool.InternalAcquireBuffer(timeout:
DWORD; doAcquireIndex: boolean): TGpSharedMemory;

var
start: int64;

begin
Result := nil;
SetError(speOK);
start := GetTickCount;
repeat
if doAcquireIndex and (not AcquireIndex) then
SetError(speNoReader)

else begin
try
if IsReader and (Index.FreeBuffers = 0) then
UnprotectedTryToResize;

if Index.FreeBuffers > 0 then begin
Result := Index.GetFreeBuffer;
if Index.ShouldResize then
if IsReader then
UnprotectedTryToResize

else
MessageQueue.PostMessage(
CGpSharedPoolMessageQueueWriteTimeout,
WM_PLEASE_RESIZE, 0, 0);

end else if Index.CanResize then begin
assert(not IsReader,'GpSharedMemory/
TGpBaseSharedPool.AcquireMemory: IsReader and
Index.CanResize');

MessageQueue.PostMessage(
CGpSharedPoolMessageQueueWriteTimeout,
WM_PLEASE_RESIZE, 0, 0);

end;
finally
if doAcquireIndex then
ReleaseIndex;

end;
end; //else not AcquireIndex
if assigned(Result) or Elapsed(start, timeout) then
break; //repeat

Sleep(0);
until false;
if (not assigned(Result)) and (LastError = speOK) then
SetError(spePoolFull);

if assigned(Result) then
bspAcquiredList.Add(Result);

end; { TGpBaseSharedPool.InternalAcquireBuffer }

➤ Listing 4: Acquiring a buffer.

July 2003 The Delphi Magazine 45

code checks if the mutex created in
Initialize is alive).

Next we can afford some optimi-
sation. If the code was called from
the Reader (bear with me just a
second, I know that the Writer is
the one that should be calling the
method) and the number of free
buffers is zero, we can try to allo-
cate more buffers immediately.

If the number of free buffers is
now positive, we can allocate the
buffer by calling Index.GetFree-
Buffer. If after that the number of
free buffers falls below the
resizeThreshold, we can do one of
two things. If running on the Reader,
the code will simply call the
resizing method, but if running on
the Writer, this is not possible as
the resizing code must execute on
the Reader. The Writer can only
post a message WM_PLEASE_RESIZE
to the Reader. To overcome the var-
ious service-related problems
(described in Issue 91), a message
is sent using my TGpMessage-
QueueWriter object.

However, if the number of free
buffers is zero, we cannot do much

better than post WM_PLEASE_RESIZE
to the Reader. A small peek in the
index checks whether all the buff-
ers are already allocated. In that
case, there is no way the resize
could succeed and the message is
not posted at all.

At the end, the index is released
and the code loops to the begin-
ning if the buffer was not acquired
and the timeout has not yet been
exceeded. Yes, the code is polling
the pool here. Maybe the problem
could be solved without that, using
some global event that gets trig-
gered whenever the number of
free buffers changes, but I have
a feeling that the code is too

complicated already. After all, in a
well-designed system you should
almost never run out of buffers.

At the end, the newly allocated
buffer (if any) is added to the inter-
nal list. When the object is
destroyed, all the buffers in this
list are returned to the pool
automatically.

So what is that with the IsReader
checks? Basically, every Reader
also implements a complete Writer
interface. The Reader can use this
to send some partially processed
buffers back to self for further

function TGpSharedPoolIndex.GetFreeBuffer: TGpSharedMemory;
var
freeBuffer: cardinal;
header : PGpSharedPoolHeader;

begin
if FreeBuffers = 0 then
raise Exception.Create(
'GpSharedMemory/TGpSharedPoolIndex.GetFreeBuffer: no free buffers');

header := SafeGetHeader('GetFreeBuffer');
freeBuffer := header^.sphFreeList;
Unlink(freeBuffer,header^.sphFreeList);
Dec(header^.sphFreeBuffers);
Entry[freeBuffer].spieStatus := Ord(iesAllocated);
Result := TGpSharedMemory.Create(GetEntryName(freeBuffer),
BufferInitialSize, BufferMaxSize, false);

Result.AcquireMemory(true, 0);
end; { TGpSharedPoolIndex.GetFreeBuffer }

Create PDF files on-the-fly

for

➤ Listing 5: Retrieving a free
buffer from the index.

46 The Delphi Magazine Issue 95

processing. Or, you can use this to
implement a Reader/Writer inter-
face with only one object. Or... I’m
sure you’ll find another use for it.

At the class level this is imple-
mented by putting all the Writer
functionality into the base class
TGpBaseSharedPool from which
Reader class TGpSharedPoolReader
(with added reading functionality)
and Writer class TGpSharedPool-
Writer (with almost no addition)
are derived.

Another interesting method,
called from the InternalAcquire-
Buffer, is TGpSharedPoolIndex.Get-
FreeBuffer (Listing 5). It is pretty
straightforward but serves as a
good example of how the index is
manipulated. First, the code
checks if there is a free buffer to
allocate (to catch programming
errors). Next it retrieves the
pointer to the header memory and
an index of the first directory entry
in the free list (header^.sph-
FreeList) and removes it from this
list (Unlink). The number of free
buffers is then decremented, the
status of this buffer is changed to
allocated and a new shared
memory object is created. The
name of this buffer is generated
(via GetEntryName, Listing 6) from
the Reader’s token (I am not ready
to discuss the reason for that
token), plus the intermediate
/Pool/ and directory index of this
entry. The last part is used to
locate this shared memory in the
pool given only the name
(GetEntryIndex, also in Listing 6).

Please Process That
When the Writer is done with
the buffer returned from

the AcquireBuffer, it can send it
back to the Reader with a call to the
SendBuffer method (see Listing 7).
It takes one parameter (TGpSha-
redMemory object) and returns True
or False. If there’s an error, addi-
tional information is stored in the
LastError property.

Following the AcquireBuffer pat-
tern, SendBuffer first acquires the
index. It then calls the TGpSha-
redPoolIndex method PrepareTo-
Send (Listing 8), which converts the
shared memory object’s name
back to the directory index,
retrieves that entry, checks if it
really is allocated (to catch pro-
gramming errors), links it into the
‘queued’ list, and frees the shared
memory object.

That last action may seem too
hasty, as the buffer was not
received by the Reader yet, but we
must never forget the larger pic-
ture. First, the Reader creates a
shared memory object and under-
lying Windows file mapping. Then
a Writer acquires this shared
memory by creating another
shared memory object that uses
the same file mapping as the first
object. That is why the memory
handled by this object is ‘shared’:
both sides access the same file
mapping and therefore the same
memory.

When the Writer destroys this
shared memory object, the
Reader’s shared memory is still
alive. Therefore, the underlying
file mapping is still active and our
data is safe.

Let’s return back to the
SendBuffer. After calling Prepare-
ToSend, it removes the shared
memory object from the internal
list of allocated objects. Only then
is the PrepareToSend error code
checked. If there was no error,
SendBuffer simply posts
WM_DATA_SENT to the Reader (even
when called from the Reader itself).
The Reader will react to this mes-
sage by scanning the directory for
all waiting buffers (neatly col-
lected in the ‘queued’ list) and
processing them.

PrepareToSend, however, can
return an error. Specifically, if this
error is speNotOwner (indicating
that we are trying to send a buffer
that is not owned by the Reader),
then the SendBuffer will allocate
new buffer and copy data from the
existing buffer into it, remove and
destroy the buffer you are trying to
send, and at the end pass the
newly created buffer to the
PrepareToSend method.

function TGpSharedPoolIndex.GetEntryName(idx: cardinal): string;
begin
Result := SafeGetHeader('GetEntryName')^.sphOwnersToken+'/Pool/';
if idx <> INVALID_HANDLE_VALUE then
Result := Result + IntToStr(idx);

end; { TGpSharedPoolIndex.GetEntryName }
function TGpSharedPoolIndex.GetEntryIndex(name: string): cardinal;
var
namePrefix: string;

begin
Result := INVALID_HANDLE_VALUE;
namePrefix := GetEntryName(INVALID_HANDLE_VALUE);
if StrLIComp(PChar(name),PChar(namePrefix),Length(namePrefix)) = 0 then begin
Delete(name,1,Length(namePrefix));
Result := cardinal(StrToIntDef(name,integer(INVALID_HANDLE_VALUE)));

end;
end; { TGpSharedPoolIndex.GetEntryIndex }

➤ Listing 6: Converting index
into name and back.

function TGpBaseSharedPool.SendBuffer(var shm:
TGpSharedMemory): boolean;

var
tempBuf: TGpSharedMemory;

begin
if not AcquireIndex then
Result := SetError(speNoReader)

else begin
try
tempBuf := shm;
Result := SetError(Index.PrepareToSend(shm));
if Result then
bspAcquiredList.Remove(tempBuf)

else if LastError = speNotOwner then begin
tempBuf := InternalAcquireCopy(shm,
CSharedPoolForeignSendTimeoutSec*1000, false);

Result := assigned(tempBuf);

if Result then begin
bspAcquiredList.Remove(shm);
FreeAndNil(shm);
shm := tempBuf;
Result := SetError(Index.PrepareToSend(shm));
if Result then
bspAcquiredList.Remove(tempBuf);

end;
end; //if Result = speNotOwner
if Result then
MessageQueue.PostMessage(
CGpSharedPoolMessageQueueWriteTimeout,
WM_DATA_SENT, 0, 0);

finally ReleaseIndex; end;
end;

end; { TGpBaseSharedPool.SendBuffer }

➤ Listing 7: Sending the buffer
back.

July 2003 The Delphi Magazine 47

At the first moment this may
look like an addition specifically
designed to break the data flow
model. After all, this ‘enhance-
ment’ allows you to pass any
TGpSharedMemory to the SendBuffer,
not just the buffers acquired from
the pool. Although this is possible,
it is not a recommended practice.
This copy-on-send was designed to
cope with something completely
different: the restarted Reader
problem.

Imagine the following, quite real-
istic, scenario. The Reader starts.
After some time the Writer starts
and acquires a buffer. The Reader
then dies and is restarted (maybe
automatically by a cluster manager
or some monitoring service or
process). The Writer sends the
buffer (acquired from the previous
Reader). What is happening behind
the scenes?

When the Reader starts, its Ini-
tialize method creates two very
special system primitives, a mutex
named <user provided pool
name>/Reader and a token (basically
a mutex with some wrapping)
named <user provided pool
name>/Token/<automatically cre-
ated GUID>. In other words, the
Reader owns two global identifiers,
one representing the Reader as a
global service with a known name,
the other representing this exact
instance of the Reader. In other
words, the Writer can verify the
Reader’s availability by checking
the existence of the mutex, and it
can verify that the Reader’s identity
hasn’t changed by checking the
existence of the token.

The Reader also creates an index,
populates the header and direc-
tory, and starts listening to the
message queue. The header con-
tains the Reader’s token. The allo-
cated memory buffer in the
directory (let’s pretend there is
only one for the sake of this discus-
sion) is owner by the Reader. The
name of this buffer is <Reader’s
token>/Pool/1.

Next, the Writer starts and cre-
ates its index object. The shared
memory areas containing the
index are now owned by two pro-
cesses: Readers and Writers.

When the Writer calls Acquire-
Buffer, another shared memory
object that uses the same mapping
as <Reader’s token>/ Pool/1 is cre-
ated. The memory buffer (file map-
ping) is now owned by two
processes.

After that, the Reader dies and is
restarted. It recreates its mutex
and token. The mutex has the same
name as before, but the token
doesn’t. The Reader initialises a
new index header, writes a new
token inside, creates a new

memory buffer and writes its name
(<Reader’s new token>/Pool/1) into
the directory.

When the Reader died, the OS
released its resources, one of
which was the shared memory
buffer. This buffer is (at that
moment), owned only by the
Writer. The newly created buffer is
owned only by the Reader.

If the Writer was to free the old
buffer at the moment (as happens
at the end of the PrepareToSend
method), Windows would destroy
the file mapping containing the
shared memory data, which is cer-
tainly not what we want to happen.

To prevent that, the code
decides that the current Reader is
not the owner of this shared
memory (because the tokens in
the shared memory name and
index header doesn’t match) and
does the mumbo jumbo that
copies the data into a Reader’s
shared memory buffer and... but I
already told you that.

The net result is that the Writer
doesn’t care where the buffer
came from, the old Reader or the
new Reader. It will Send the buffer
correctly in any case.

To complete this transaction,
the Reader must somehow read the
data from the buffer. Remember,
the Writer posted the message
WM_DATA_SENT to the Reader as
the last action in the SendBuffer
method. The reader receives
this message in a slightly
circuitous manner.

function TGpSharedPoolIndex.PrepareToSend(
var buffer: TGpSharedMemory): TGpSharedPoolError;

var
header: PGpSharedPoolHeader;
idx : cardinal;

begin
header := SafeGetHeader('FreeBuffer');
idx := GetEntryIndex(buffer.Name);
if idx = INVALID_HANDLE_VALUE then
Result := speNotOwner

else begin
if Entry[idx].spieStatus <> Ord(iesAllocated) then
raise Exception.Create('GpSharedMemory/TGpSharedPoolIndex.PrepareToSend:
trying to send buffer with status '+IntToStr(Entry[idx].spieStatus));

Entry[idx].spieStatus := Ord(iesQueued);
Link(idx,header^.sphQueuedList);
Result := speOK;
FreeAndNil(buffer);

end;
end; { TGpSharedPoolIndex.PrepareToSend }

➤ Listing 8: Preparing the buffer
to be sent back.

function TGpSharedPoolReader.ReadData: boolean;
var
iData: integer;

begin
if not AcquireIndex then
Result := false

else begin
try
Index.ReadData(StoreReceivedData);

finally ReleaseIndex; end;
if assigned(sprOnDataReceived) then begin
for iData := 0 to sprReceivedDataList.Count-1 do
DoDataReceived(TGpSharedMemory(sprReceivedDataList[iData]));

sprReceivedDataList.Clear;
end;
//else wait for owner to read data explicitely via GetNextReceived
SetEvent(sprDataReceivedEvent);
Result := true;

end;
end; { TGpSharedPoolReader.ReadData }
procedure TGpSharedPoolReader.StoreReceivedData(shm: TGpSharedMemory);
begin
sprReceivedDataList.Add(shm);
AcquiredList.Add(shm);

end; { TGpSharedPoolReader.StoreReceivedData }

➤ Listing 9: Processing received
buffers.

48 The Delphi Magazine Issue 95

In the first version of the shared
pool code, I simply created an
internal window (AllocateHwnd).
The message was sent to the
window handle that was stored in
the index header. As you know if
you read the third part in the
series, this doesn’t work on newer
Windows version if the code that
created the window is in the ser-
vice and the message sender is not.
To solve that, I have created a
messaging class that only uses
shared memory and an event. The
Writer now uses this messaging
class (TGpMessageQueueWriter)
instead of a simple PostMessage.

Because the internal window
was handling some other mes-
sages that were created inside the
Reader, I have decided to leave it
there. I also made no changes in its
internals, message handling code
for this window still checks for the
WM_DATA_SENT message and calls
appropriate method. The new
TGpMessageQueueReader merely
receives WM_DATA_SENT via my own
mechanism and reposts it to this
internal window. This really is a
plug-and-play solution to a
complicated problem!

The main workhorse that trig-
gers when WM_DATA_SENT is received
is the TGpSharedPoolReader.Read-
Data method (Listing 9).

It uses a method from the index
object, ReadData, to iterate over the

buffers in the ‘queued’ list and a
helper function, StoreReceivedData
(also shown in Listing 9), called
from ReadData. The former iterates
over the ‘queued’ list and converts
each entry back to ‘allocated’
status. It also creates a new shared
memory object pointing to the
same file mapping as the original
one and passes this new object to
the helper function (StoreRecei-
vedData in our case). StoreRecei-
vedData simply stores those
objects into two internal lists: a
list of acquired objects (so it can be
freed on Destroy) and a list of
received objects.

Those objects must now be
passed to the external code some-
how. If there is a handler for the
OnDataReceived event defined,
ReadData will for each received
shared memory object, call this
handler and then remove the
object from the internal list. If the
handler is not defined, ReadData
only signals the DataReceivedEvent
event (a public property). External
code can wait on this event and call
the GetNextReceived function in a
loop. GetNextReceived returns the
first object in the ‘received’ list, or
nil if there is no such object. It also
removes the object from the list.

Independent of the way the
external code decides to read the
data, synchronously (OnDatarece-
ived) or asynchronously (Data-
ReceivedEvent + GetNextReceived),
it now owns that data (or, rather,

the shared memory object that
wraps the data). So it must, some-
where, destroy this object by call-
ing the ReleaseBuffer method.

As a final thought, if the Writer
decides that it doesn’t want to
send the buffer, it can simply call
the ReleaseBuffer method, which
moves the buffer back to the ‘allo-
cated’ queue and destroys the
Writer’s shared memory object for
this buffer.

Pool Sizing
Finally, let’s take a look at how new
buffers in the pool are allocated
and how the ‘sweeper’ code works.

Resizing is done inside the
method TGpSharedPoolIndex.Try-
ToResize (Listing 10). After check-
ing for some error conditions (indi-
cating errors in the shared pool
code), the main while loop iterates
over the disposed list (containing
directory entries with no memory
buffer attached), moves entries to
the free list and allocates shared
memory objects.

Finally, this method resizes the
directory shared memory object
(if necessary) and initialises newly
created entries.

Of course, during all that pro-
cessing, the code makes sure that
it doesn’t allocate more buffers
than allowed (resizeIncrement
passed to TGpSharedPoolReader.
Initialize). To release unneces-
sary buffers, the ‘sweeper’ (actu-
ally, TGpSharedPoolIndex.Sweep,

function TGpSharedPoolIndex.TryToResize(numBuffers:
cardinal): TGpSharedPoolError;
function CreateMemory(idx: cardinal): boolean;
begin
try
Entry[idx].spieHandle :=
TGpSharedMemory.Create(GetEntryName(
idx),BufferInitialSize,BufferMaxSize,false);

Result := true;
except
Result := false;

end;
end; { CreateMemory }

var
header: PGpSharedPoolHeader;
iEntry: integer;

begin
Result := speWin32Error;
if not spiIsReader then
raise Exception.Create('GpSharedMemory/
TGpSharedPoolIndex.TryToResize: writer tried to resize
shared memory pool');

if not assigned(spiDirectoryBlock) then
raise Exception.Create('GpSharedMemory/
TGpSharedPoolIndex.TryToResize: directory does not
exist');

header := SafeGetHeader('TryToResize');
if numBuffers = 0 then
numBuffers := header^.sphResizeIncrement;

while (numBuffers > 0) and (header^.sphDisposedList <>
INVALID_HANDLE_VALUE) do begin

iEntry := header^.sphDisposedList;
Unlink(iEntry, header^.sphDisposedList);
if not CreateMemory(iEntry) then
Exit;

Entry[iEntry].spieStatus := Ord(iesFree);
Link(iEntry, header^.sphFreeList);
Dec(numBuffers);
Inc(header^.sphNumBuffers);
Inc(header^.sphFreeBuffers);

end; //while
if (header^.sphNumEntries + numBuffers) >
header^.sphMaxBuffers then
numBuffers := header^.sphMaxBuffers -
header^.sphNumEntries;

if numBuffers > 0 then begin
spiDirectoryBlock.Size := spiDirectoryBlock.Size +
numBuffers*SizeOf(header^.sphIndexEntrySize);

for iEntry := header^.sphNumEntries+numBuffers-1
downto header^.sphNumEntries do begin
if not CreateMemory(iEntry) then
Exit;

Entry[iEntry].spieStatus := Ord(iesFree);
Link(iEntry, header^.sphFreeList);

end; //for iEntry
Inc(header^.sphNumBuffers, numBuffers);
Inc(header^.sphFreeBuffers, numBuffers);
Inc(header^.sphNumEntries, numBuffers);

end;
Result := speOK;

end; { TGpSharedPoolIndex.TryToResize }

➤ Listing 10: Growing the pool.

50 The Delphi Magazine Issue 95

Listing 11) wakes up every 15 sec-
onds (by default: you can change
that), triggered by the internal
TTimer.

The Sweepmethod walks over the
free list and for each directory
entry checks if the associated
memory buffer has been released
before the last pass of the sweeper.
It adds all such entries into a
temporary list.

When the first pass is done, the
sweeper iterates over this tempo-
rary list and for each entry frees
the associated shared memory
object, changes the status to
disposed, removes the entry from
the free list and adds it to the
disposed list. It also adjusts
the global number of allocated
buffers (sphNumBuffers) and the
number of free buffers
(sphFreeBuffers).

Example
This month’s source code includes
the testbed application that will
help you explore the shared pool.
Start two copies of the
testGpSharedMem.exe program
and click CreateReader in the first
and CreateWriter in the second.
Then play with the Acquire, Send,
and Release buttons and watch

the program’s
log (see Figure
2). Of course,
you should
also take a
look at the main
unit for this
small test appli-
cation, which
is called

testGpSharedMem1, to see how it
uses the shared pool.

The testbed uses two interfaces
to the shared pool: procedural (as
described in the article) and
componentized (which is just a

light wrapper around the
TGpSharedPool* classes). Of course
you can use any of them in your
application; you will know best
which one suits you most.

Primoz Gabrijelcic is R&D Man-
ager of FAB d.o.o. in Slovenia.
You can contact him at gp@
fab-online.com. All the code in
this article is freeware and may
be freely reused in your own
applications.

procedure TGpSharedPoolIndex.Sweep;
var
header : PGpSharedPoolHeader;
idx : cardinal;
iEntry : integer;
iList : integer;
releaseList: TList{cardinal};

begin
header := SafeGetHeader('Sweep');
releaseList := TList.Create;
try
idx := header^.sphFreeList;
while (idx <> INVALID_HANDLE_VALUE) and
(header^.sphNumBuffers >
(header^.sphMinBuffers+cardinal(
releaseList.Count))) do begin
if (Entry[idx].spieStatus = Ord(iesFree)) and

((Now-Entry[idx].spieReleasedAt)*SecsPerDay >
header^.sphSweepTimeoutSec) then
releaseList.Add(pointer(idx));

idx := Entry[idx].spieNext;
end; //while
for iList := 0 to releaseList.Count-1 do begin
iEntry := cardinal(releaseList[iList]);
TGpSharedMemory(Entry[iEntry].spieHandle).Free;
TGpSharedMemory(Entry[iEntry].spieHandle) := nil;
Entry[iEntry].spieStatus := Ord(iesDisposed);
Unlink(iEntry, header^.sphFreeList);
Link(iEntry, header^.sphDisposedList);
Dec(header^.sphNumBuffers);
Dec(header^.sphFreeBuffers);

end; //for
finally FreeAndNil(releaseList); end;

end; { TGpSharedPoolIndex.Sweep }

➤ Listing 11: Shrinking the pool.
➤ Figure 2:

Shared pool
testbed.

