
October 2002 The Delphi Magazine 59

A Synchronisation Toolkit
by Primoz Gabrijelcic

Every programmer accumulates
reusable code over the years

and I am no exception. Sometimes,
parts of that code seem generic
enough to be worth documenting
and presenting it to the public.

Today, I’d like to put on display
four classes belonging to the
inter-process synchronisation part
of my personal toolbox. You can
start using them right now.

This article is the first in a short
occasional series (in other words,
they won’t necessarily follow on
month-by-month). The final goal is
to present a set of classes that can
broadcast ‘events’ between appli-
cations on one computer (some-
thing like Delphi’s event model
except that it supports multiple
processes and multiple listeners).
We will reach that goal in a few
stages, but first we will take a look
at some very basic synchronisa-
tion tools. Then we will build a
powerful shared memory object,
match it with XML, and finally start
broadcasting events around.

Finally, a warning. This is not an
entry-level article. I would recom-
mend that you be at least
acquainted with the Windows
kernel synchronisation primitives
(that is: mutex, event and sema-
phore), because I don’t have the
space talk too much about them.
An excellent article on this topic
was published way back in Issue 17
(Sharing Data With The Win32 API
by John Chaytor). Another
excellent source of information is
Programming Applications for Win-
dows (formerly called Advanced
Windows) by Jeffrey Richter, which
is a truly great book and a ‘must

read’ for anybody digging into
Windows API.

A Token
The first tool I’d like to present is a
simple ‘unique token’ generator. It
is not a synchronisation tool per se,
but I still feel that it belongs to the
synchronisation toolkit.

Sometimes when writing Win-
dows applications we get a prob-
lem of unique identification. We
have an entity (say a process,
thread or object) and we need a
way to uniquely identify it. The
identification should be repre-
sented as a string that can be easily
stored away or sent from one pro-
cess to another. We also want to be
able to tell if the entity (for which
we have an identification) is still
alive. That test should work cor-
rectly even if the process owning
that entity crashed and went to
computer heaven without execut-
ing any cleanup code [Delphi apps
always go to computer heaven when
they crash, unlike C++ apps of
course... Ed.].

These requirements arise from a
class of client-server applications
where client doesn’t only want to
know if the server is alive (this can
easily be achieved with a simple
mutex) but also if it is still the same
server as in the beginning of the
session.

Basically, we have to solve two
problems: how to generate system-
wide unique names and how to
create a system-wide object that
disappears if the owner dies. Both
problems are simply solved by the
use of the Win32 API.

To generate a unique name, we
simply generate a GUID (a Globally
Unique IDentifier). Microsoft

guarantees that GUIDs are unique
inside the system and they are
even statistically unique world-
wide, if the computer has a net-
work card installed. Let that
suffice. If you want to know more
on GUIDs, fire up the Collection
2002 CD or open that huge box
with your old copies of The Delphi
Magazine and search for Issue 28
(Delphi Meets COM: Part 1) where
Dave Jewell explained it all.

To generate a GUID we only have
to call one API function, CoCreate-
Guid (declared in ActiveX.pas). It
takes a parameter of type TGUID,
which is filled with the generated
GUID. To convert this value into a
readable representation, we call
another function, GUIDToString
(declared in ComObj.pas). The
result is a string which looks like
this

{F91E84C9-7CE9-4657-ADBF-
B5DE014F822C}

from which we will strip the lead-
ing and trailing curly brackets.
The token creation code in the
TGpToken constructor then tries to
further reduce any possible con-
flicts by prefixing this result with a
constant:

Gp/GpToken/04DC5A63-86AA-4439-
8E9D-BC75C276968E/

Why? Because it is a good idea to
use a hierarchical namespace for
all system-wide identifiers you’re
using. For example, if you will be
using this token name as a global
(system-wide) mutex name, then
you should make sure that no
other process (possibly written by
another programmer) would use
the same name. Because of that,
calling a global object MyMutex, for
example, is not a very good thing.
It is best to use a hierarchical form
that starts with (say) the company
name or the programmer’s initials,
followed by the name of the pro-
ject, then maybe the name of
the part of the project, and then

constructor TGpToken.Create;
var
guid: TGUID;

begin
CoCreateGuid(guid);
gtTokenName := GUIDToString(guid);
gtTokenName := CGpTokenPrefix + Copy(gtTokenName, 2, Length(gtTokenName)-2);
Publish;

end; { TGpToken.Create }

➤ Listing 1: Creating a token.

60 The Delphi Magazine Issue 86

a GUID, generated just for that
purpose.

Having said all that,actually I
must admit that there is not much
need to use the prefix when gener-
ating a token name. Remember
that a GUID is used for the token
name and that is pretty unique by
itself. Still, I think you will agree
that it doesn’t hurt to get into good
programming habits.

To recap, the code that creates a
unique name and publishes it (I’ll
explain the ‘publishing’ part in a
second) is shown in Listing 1.

Now that we have a unique
name, we must make the name
known to all the other processes
sharing the same computer that
this name is in use. The easiest
way to achieve this is to create a
mutex with that name. This is done
in the Publish method, shown
in Listing 2. There is really only one
important line in the Publish
method:

gtToken := CreateMutex(nil,
false, PChar(Token))

All the rest is error handling. We
want to make sure that the token is
not already published, that the
mutex was successfully created,
and that no other mutex with the
same name exists. Similarly, the
method Revoke (Listing 3) un-pub-
lishes the token by closing the
mutex handle. The job is done by
the CloseHandle(gtToken) call,
wrapped in some error handling.

I separated publishing and
revoking the token into public
subroutines because somebody
might want to temporarily make
some service (identified by the
token) invisible. To achieve that,
the programmer would only have
to Revoke the token and Publish it
back when the service was avail-
able again. This neatly corre-
sponds to the Windows service
model: create the TGpToken when
the service is started, Revoke it
when it is paused, Publish it
when it is continued and destroy
the token when the service is
stopped.

To check if the token is pub-
lished we will simply create the
mutex (just like in the Publish
method) and check the returned
handle and error code. If the error
code is 0, this means the mutex was

successfully created, implying
that no token with that name is
published at the moment. If the
error code is ERROR_ALREADY_
EXISTS, a mutex with that name
already exists. As you have surely
already guessed, that means that
the token is published. At the end
we must close the mutex used for
testing.

Testing could be implemented
as a global function. I have
decided, however, not to pollute
the global namespace and there-
fore have moved this function into
the TGpToken class. Of course, I’m
not expecting fellow programmers
to create an instance of this class
every time they want to check if
some token is published, so I made
the checker a class function (see
Listing 4). The minor disadvantage
of this approach is that a program-
mer must always use the long
form, TGpToken.IsTokenPublished,
to call it.

The last part of the TGpToken
class is just a small helper function
(again created as a class function:
see Listing 5) that creates a
TGpToken object, returns its token
and destroys it. It is useful if you
only need the string representa-
tion of the token and not the
publishing/revoking mechanism.

So how does this approach fare
when the program auto-destructs
without a warning (possibly

procedure TGpToken.Publish;
begin
if IsPublished then
raise EGpSync.CreateFmt(sAlreadyPublished, [Token]);

gtToken := CreateMutex(nil, false, PChar(Token));
if gtToken = 0 then
RaiseLastWin32Error

else if GetLastError = ERROR_ALREADY_EXISTS then
raise EGpSync.CreateFmt(sTokenAlreadyExists, [Token]);

end; { TGpToken.Publish }

➤ Listing 2: Publishing a token.

procedure TGpToken.Revoke;
begin
if not IsPublished then
raise EGpSync.CreateFmt(sNotPublished, [Token]);

if not CloseHandle(gtToken) then
RaiseLastWin32Error

else
gtToken := 0;

end; { TGpToken.Revoke }

➤ Listing 3: Revoking a token.

class function TGpToken.IsTokenPublished(token: string): boolean;
var
testToken: THandle{CreateMutex};

begin
testToken := CreateMutex(nil, false, PChar(token));
if testToken = 0 then
raise EGpSync.CreateFmt(sInvalidToken, [token])

else begin
try
Result := (GetLastError = ERROR_ALREADY_EXISTS);

finally
if not CloseHandle(testToken) then
RaiseLastWin32Error;

end;
end;

end; { TGpToken.IsTokenPublished }

➤ Listing 4: Checking if a token
is published.

class function TGpToken.GenerateToken: string;
begin
with TGpToken.Create do begin
Result := Token;
Free;

end; //with
end; { TGpToken.GenerateToken }

➤ Listing 5: Quick token generation.

October 2002 The Delphi Magazine 61

because of an internal error, or
because somebody kills it with a
TerminateProcess)? It fares very
well, thanks. Windows guarantees
that any mutex owned by the
process will be released and
closed when that process termi-
nates, even if it is killed with
TerminateProcess. If the process
dies, the mutex is closed, the token
is no longer published, and every-
thing behaves as expected.

For those of you that believe in
using components at every step, I
have created a component wrap-
per named TGpTokenComp (in the
unit GpSyncComp). It publishes the
properties Token (for read-only
access to the token name) and
IsPublished (a read-write property:
toggling it causes the token to be
published or revoked). Other
TGpToken methods are available
through the public methods.

In the GpSync unit (that is the one
containing all synchronisation
tools from this article) you will
also find a TGpSWMRList class, which
is a descendant of TObjectListwith
additional type checking. Nothing
fancy, just a small helper that can
make your code cleaner.

A Group
Enough of tokens, let’s move on.
The next item in my toolkit is a
group. This is an encapsulation of a
pool of entities (again, it can be a
process, a thread, an object, or
practically anything). An entity
may join the group and leave it.
Many entities (an unlimited
number) can be members at the
same time. The group may also be
empty. We cannot tell how many
members of the group there are,
we can only tell whether the group
is empty or not.

I have described a similar primi-
tive, a file-based group, in my
article on file system-based syn-
chronization primitives (Let’s
Cooperate, in Issue 68). To keep
things simple, and programming
more portable, the group from this
article implements the same
interface as the file-based group.

The basic interface is simple: an
entity can Join a group and Leave it.
On Join, it will receive a flag indi-
cating whether it was the first one

to enter. On Leave, a flag will be set
if the entity was last to leave the
group.

There are two versions of Join
and Leave, one with a simplified
parameter list. This simpler ver-
sion can be used when you don’t
need the ‘is first/was last’ status.
There is also IsEmpty, which
checks whether the group is empty
but does not enter it. And there is a
fairly trivial IsMember, which tells
us if we have already joined the
group.

As it is a system-wide object
used for inter-process communica-
tion, every group must be named.
To make the name as unique as
possible (to prevent clashes with
programs written by fellow
programmers), you should make
sure that the name is not easy to
guess: possibly by using some
hierarchical form as I have already
described.

The group is implemented using
two mutexes. One is used to repre-
sent the group (we’ll call it the
‘membership’ mutex), the second
prevents internal operations from
being executed at the same time
(the ‘synchronisation’ mutex). The
names of both the mutexes are

derived from the the name of the
group. The first has the string
MTXMember attached to the group
name and the second is formed by
adding MTXSync to the group
name.

In other words, if the group is
named Gp/Groups/MyGroup, then the
membership mutex is named
Gp/Groups/MyGroupMTXMember and
the synchronisation mutex is
Gp/Groups/MyGroupMTXSync.

A group functions in a similar
way to the token: its presence is
indicated by the state of the asso-
ciated membership mutex. If the
mutex exists, at least one process
is in the group. When all the pro-
cesses leave the group (that is,
close the mutex), the mutex disap-
pears. Although the general idea is
simple, the implementation is
slightly complicated by the fact
that we want to be notified when
the first process enters the group
and the last process leaves it.

To join the group, the process
calls the Join method (Listing 6). It
first checks if the process has
already joined the group (to
handle nested Join/Leave calls)

procedure TGpGroup.Join(var isFirstMember: boolean);
begin
if not IsMember then begin
WaitForSingleObject(grSyncMutex, INFINITE);
try
grMemberMutex := CreateMutex(nil, false, PChar(MemberMutexName));
if grMemberMutex = 0 then
RaiseLastWin32Error

else begin
isFirstMember := (GetLastError = 0);

end;
finally ReleaseMutex(grSyncMutex); end;

end;
Inc(grTimesMember);

end; { TGpGroup.Join }

➤ Listing 6: Joining a group.

procedure TGpGroup.Leave(var wasLastMember: boolean);
begin
if not IsMember then
raise EGpSync.CreateFmt(sNotJoined, [Name]);

Dec(grTimesMember);
if grTimesMember = 0 then begin
WaitForSingleObject(grSyncMutex, INFINITE);
try
CloseHandle(grMemberMutex);
grMemberMutex := CreateMutex(nil, false, PChar(MemberMutexName));
if grMemberMutex = 0 then
RaiseLastWin32Error

else begin
wasLastMember := (GetLastError = 0);
CloseHandle(grMemberMutex);
grMemberMutex := 0;

end;
finally ReleaseMutex(grSyncMutex); end;

end;
end; { TGpGroup.Leave }

➤ Listing 7: Leaving a group.

62 The Delphi Magazine Issue 86

and then enters the critical sec-
tion, governed by the synchronisa-
tion mutex (the reasons for that
will become clear later, when we
examine the Leavemethod). Then it
creates the membership mutex
and checks whether this was the
first instance of the mutex (giving
error code 0) or not (giving error
code ERROR_ALREADY_EXISTS). At the
end, the synchronisation mutex is
released.

Leaving the group (see Listing 7)
is more complicated. If it were not
for the fact that we want to know
the status of the ‘was last’ status, a
simple CloseHandle(membership-
mutex) call would suffice. To get the
status of the group, we must then
recreate the mutex, check the
error status (as in the Join
method) and close the mutex.

Just as in Join, Leave is also
wrapped into a critical section.
Without that precaution, another
process could Join in the middle of
the CloseHandle.. CreateMutex..
CloseHandle sequence, giving us a
really weird result.

The last important method of the
TGpGroup class is the function
IsEmpty, which checks whether a
group contains any members. Its
implementation (shown in Listing
8) is similar to the Join method.
IsEmpty first creates the mutex,
then checks the error code, and
closes the mutex. Of course, all
that is only executed if this
TGpGroup instance is not already a
member of the group. In that case,
the method knows that the group
is not empty without any further
checking.

If a process that is a member of a
TGpGroup forcibly dies, it is auto-
matically removed from the group,
as all of its mutexes are automati-
cally released and closed by
Windows.

TGpGroup is accompanied by the
matching component TGpGroup-
Comp. It implements membership
and emptiness checking through
the properties IsMember and
IsEmpty. The former can also be
used to join or leave the group (by
setting it to true or false,
respectively). This method of join-
ing or leaving the group, however,
does not return the ‘is first/was

last’ information. If you need that
information, use the public Join
and Leave methods.

To round things up, TGpGroup is
also accompanied by the
TObjectList descendant TGpGroup-
List.

A Counted Group
A logical extension of the simple
group described above is a group
that knows exactly how many
members are actually present at
the moment. In addition to that, it
would be nice if we could limit the
maximum number of group
members.

If you are familiar with the Win-
dows synchronisation primitives,
you may have noticed that this is
very similar to the way a sema-
phore operates. In fact, that is
exactly how the counted group is
implemented: a semaphore is used
for counting and a mutex protects
internal operations, just like in the
TGpGroup class.

The use of a semaphore also
brings up some problems that I
was not aware of when coding the
counted group. Only when writing
this text did I find an excellent arti-
cle Sharing Data With The Win32
API (by John Chaytor, in Issue 17),
where the author stated: Windows
does not clean up a Semaphore
object correctly if the application
terminated without calling Release-
Semaphore. That was so weird
that I couldn’t believe it without
checking it out. Of course, Mr
Chaytor was right: semaphores on
Win32 are unsafe. It is possible for
a process to die without releasing a
semaphore that it owns.

To put you at ease, let me say
that all is not as black as it seems
(or nobody would be using sema-
phores at all). It is hardly possible

that this will ever happen to a well-
written process under normal cir-
cumstances (by well-written I
mean a program that is protecting
its resources and matches every
acquisition of a semaphore with a
call to ReleaseSemaphore). But even
a well-written program can die
while it has a semaphore acquired.
Somebody may kill it from the Task
Manager’s Processes page or with
another utility that terminates it
with a call to TerminateProcess. Or
somebody (maybe even the pro-
gram itself) can kill the thread that
is holding the semaphore with a
call to TerminateThread. But the
most probable cause of problems
is the programmer him/herself. In
the heat of a debugging session it
is very easy to reset the execution
(Ctrl-F2) when the semaphore is
acquired, and that would of course
cause it not to be released.

Sadly, there is no easy way to
recover from such a situation. It
may help to log off and re-login,
then again it may not (if the sema-
phore in question was owned by a
service) and only a reboot would
help.

The moral of the story is that if
you are using semaphores (or
counted groups, which are based
on semaphores), be very, very
careful and always expect the
unexpected.

So now to the implementation.
As I have already said, a counted
group uses one mutex to protect
internal operations and one sema-
phore to keep a count of free
slots in the group. Both are created
and initialised in the constructor,
the semaphore is created with an
initial count and maximum count

function TGpGroup.IsEmpty: boolean;
begin
Result := false;
if not IsMember then begin
WaitForSingleObject(grSyncMutex, INFINITE);
try
grMemberMutex := CreateMutex(nil, false, PChar(MemberMutexName));
if grMemberMutex = 0 then
RaiseLastWin32Error

else begin
Result := (GetLastError = 0);
CloseHandle(grMemberMutex);
grMemberMutex := 0;

end;
finally ReleaseMutex(grSyncMutex); end;

end;
end; { TGpGroup.IsEmpty }

➤ Listing 8: Checking whether
the group is empty.

October 2002 The Delphi Magazine 63

of MemberLimit (a parameter of the
constructor representing the maxi-
mum number of group members).

To join the counted group, the
process calls the Join method. It
takes one or two parameters, just
like the TGpGroup.Join.

Joining the counted group is
slightly tricky. To check if the

caller is the first member of the
group, we must examine the sema-
phore count. But the only way to
get it is to wait on the semaphore
for the second time and then
release it with a call to Release-
Semaphore, which can return the
previous semaphore count (just as
it was before the call to Release-
Semaphore).

All three semaphore operations
(wait, wait again and release) must

be protected with the mutex (or
the result would be hopelessly
unpredictable). So the main ques-
tion is: when should we acquire
this mutex? Just after the sema-
phore is acquired for the first
time? No, that would leave a short
time when operations are not pro-
tected. How about just before the
semaphore is acquired? This is
better, but if the semaphore could
not be acquired because the group
is full, we would have to release the
mutex (to allow another process to
leave the group) and try again after
some time. In effect, we would
have to reproduce the test-and-
wait loop used in the file
system-based group I described in
Issue 68.

Luckily, Windows offers us a
better alternative: we can wait on
both the semaphore and the mutex
at the same time. The kernel will
make sure that we either acquire
both or neither. We only have to
call WaitForMultipleObjects and
set the bWaitAll parameter to
True. After that, the Join code
(shown in Listing 9) is simple. It
first increments the internal vari-
able which counts how many
times this object has joined the
group (TGpCounterGroup supports
nested Join/Leave calls from the
same object). Then it checks
whether this is the first member of
the group, by retrieving the cur-
rent number of members. If this is
equal to the MemberLimit-1, this is
the first member (this object has
already joined the group and has
decremented the semaphore
count). At the end, the code
releases the mutex, allowing other
internal operations to execute.

The internal function Unpro-
tectedNumMembers (see Listing 10),
which is also called from the
public function NumMembers, was
mostly described two paragraphs
above. It waits on the semaphore
and then releases it, retrieving the
semaphore count along the way. If
the semaphore cannot be
acquired, the group is already full
and the function returns the
group’s MemberLimit parameter.

Leaving the group is much sim-
pler. First we decrement the inter-
nal membership counter, and then

function TGpCountedGroup.Join(timeout: DWORD; var isFirstMember: boolean):
boolean;

var
handles: array [0..1] of THandle;
waitRes: DWORD;

begin
handles[0] := cgrSemaphore;
handles[1] := cgrMutex;
waitRes := WaitForMultipleObjects(2,@handles,true,timeout);
if (waitRes <> WAIT_OBJECT_0) and (waitRes <> (WAIT_OBJECT_0+1)) then
Result := false

else begin
try
Inc(cgrTimesMember);
isFirstMember := (UnprotectedNumMembers = (MemberLimit-1));

finally
if not ReleaseMutex(cgrMutex) then
RaiseLastWin32Error; { this really shouldn't happen }

end;
Result := true;

end;
end; { TGpCountedGroup.Join }

➤ Listing 9: Joining a counted
group.

function TGpCountedGroup.UnprotectedNumMembers: integer;
var
memberCount: integer;

begin
if WaitForSingleObject(cgrSemaphore,0) <> WAIT_OBJECT_0 then
Result := MemberLimit

else begin
if not ReleaseSemaphore(cgrSemaphore,1,@memberCount) then
RaiseLastWin32Error; { this really shouldn't happen }

Result := (MemberLimit - (memberCount+1));
end;

end; { TGpCountedGroup.UnprotectedNumMembers }

➤ Listing 10: Retrieving a group member count.

TGpSWMR = class
constructor Create(swmrName: string);
destructor Destroy; override;
procedure Done; virtual;
function WaitToRead(timeout: DWORD): boolean; virtual; // true if allowed
function WaitToWrite(timeout: DWORD): boolean; virtual; // true if allowed
property Access: TGpSWMRAccess read gwrAccess;
property Name: string read gwrName;

end; { TGpSWMR }

➤ Listing 11: Interface of the Single Writer Multipler Readers guard.

function TGpSWMR.WaitToRead(timeout: DWORD): boolean;
var
prevCount: longint;

begin
if WaitForSingleObject(gwrMutexNoWriter, timeout) <> WAIT_TIMEOUT then begin
ReleaseSemaphore(gwrSemNumReaders, 1, @prevCount);
if prevCount = 0 then
ResetEvent(gwrEventNoReaders);

ReleaseMutex(gwrMutexNoWriter);
Result := true;

end else
Result := false;

end; { TGpSWMR.WaitToRead }

➤ Listing 12: Getting the read access.

64 The Delphi Magazine Issue 86

we leave the group by calling the
ReleaseSemaphore routine. This is
protected with the mutex to pre-
vent it from interfering with
another object executing the Join
method.

The other counted group meth-
ods are also quite simple and I
won’t describe them here. Examine
the source code and I’m sure you
will understand how they work
easily enough.

The matching component
TGpCountedGroupComp exposes the
counted group functionality in the
same manner as TGpGroupComp. Of
course, TGpCountedGroup is also
accompanied by the TObjectList
descendant TGpCountedGroupList.

Writers And Readers
The last tool in my toolkit, for now,
is a good old Single Writer Multiple
Readers guard (or SWMR for
short), with a few twists. The
SWMR protects a resource that
can be accessed either by a single
writer or by multiple readers. It can
be found in different Delphi librar-
ies, and even in Delphi itself: the
SysUtils unit has the TMultiRead-
ExclusiveWriteSynchronizer class
that implements an inter-process
SWMR guard.

The TGpSWMR interface (shown in
Listing 11) is quite simple. The
caller uses WaitToRead in order to
get read access to the protected
resource and WaitToWrite to get
write access to the resource. In
both cases, access is released
with the Done method. In addition,
multiple WaitTo/Done calls can be

nested. For example, a process
can call WaitToRead twice in a row
without an intermittent Done call.
After that, the process must call
Done twice in order to release the
protected resource.

It is also possible to call
WaitToRead when a process already
owns a write lock obtained by
WaitToWrite. In that case, the pro-
cess already has an exclusive
access to the protected resource,
and WaitToRead call does not have
to do anything. Of course, the pro-
cess must still call Done twice to
release the resource.

Looking at it the other way
around: calling WaitToWrite when
the process already owns a read
lock is not permitted and will raise
an exception.

The basic TGpSWMR implementa-
tion is directly copied from Jeffrey
Richter’s Advanced Windows. On

top of that that existing framework
I have added some simple code
that implements nested WaitTo
calls.

Mr Richter’s code uses three
primitives to implement the SWMR
guard: a mutex to indicate that
there is no writer, a semaphore to
count active readers, and lastly an
event to signal when no readers
are accessing the protected
resource. A semaphore is created
with an initial count of 0, to indi-
cate that no readers are currently
accessing the resource.

Listing 12 shows the important
parts of the WaitToRead method (all
of the code which handles the
nested WaitTo/Done calls has been
removed for clarity: it’s on the disk
of course). It read-locks the
resource by waiting on the mutex
gwrMutexNoWriter. That wait is only
successful if there is no writer and
the mutex is not acquired. When
the mutex is acquired, the code
releases the semaphore gwrSem-
NumReaders in order to increment
the number of active readers. The
ReleaseSemaphore call returns the
previous semaphore count: if this
previous count is zero, we are the

function TGpSWMR.WaitToWrite(timeout: DWORD): boolean;
var
handles: array [1..2] of THandle;

begin
handles[1] := gwrMutexNoWriter;
handles[2] := gwrEventNoReaders;
Result := (WaitForMultipleObjects(2, @handles, true, timeout) <> WAIT_TIMEOUT);

end; { TGpSWMR.WaitToWrite }

➤ Listing 13: Getting the write access.

procedure TGpSWMR.DoneReading;
var
handles: array [1..2] of THandle;

begin
handles[1] := gwrMutexNoWriter;
handles[2] := gwrSemNumReaders;
WaitForMultipleObjects(2, @handles, true, INFINITE);
if WaitForSingleObject(gwrSemNumReaders, 0) = WAIT_TIMEOUT then
SetEvent(gwrEventNoReaders) // last reader

else
ReleaseSemaphore(gwrSemNumReaders, 1, nil);

ReleaseMutex(gwrMutexNoWriter);
end; { TGpSWMR.DoneReading }

➤ Listing 14: Releasing the read access.

procedure TGpSWMR.DoneWriting;
begin
ReleaseMutex(gwrMutexNoWriter);

end; { TGpSWMR.DoneWriting }

➤ Listing 15: Releasing the write
access.

➤ Figure 1

October 2002 The Delphi Magazine 65

first reader and we have to reset
the event gwrEventNoReaders, indi-
cating that at least one reader
exists. At the end, the code
releases the gwrMutexNoWriter
mutex.

The WaitToWrite routine (for
which simplified code is shown in
Listing 13) is simpler: it only waits
on both gwrMutexNoWriter and
gwrEventNoReader to become sig-
nalled at the same time. This can
only happen when there is no
writer and no reader, which is
exactly when we can write-lock
the protected resource.

When read access is released,
the public method Done calls the
private workhorse routine Done-
Reading (shown in Listing 14). It
waits on gwrMutexNoWriter and
gwrSemNumReader at the same time.
The former must be acquired in
order to prevent a race condition,
while the latter is waited on simply
to decrease the semaphore count
(indicating we have one less
reader). The code then tries to wait
on the semaphore again to check if

this is the last reader. If this is the
case, the event gwrEventNoReader is
signalled, otherwise the sema-
phore count is returned back to the
previous value. At the end,
gwrMutexNoWriter is released.

Again, the code to release the
write access is simpler (shown in
Listing 15). It only releases the
mutex gwrMutexNoWriter (acquired
in the WaitToWrite method).

Because it uses a semaphore,
TGpSWMR doesn’t really like its
owner to be killed. Handle it with
care!

Needless to say, TGpSWMR is
accompanied by the component
TGpSWMRComp and the TObjectList
descendant TGpSWMRList.

Conclusion
I hope you will find the techniques
and code presented in this article
useful in your projects.

Also included on the companion
disk is a demonstration program
(shown in Figure 1) that will help
you understand and test all of the
tools from this article.

That is all for now. In the next
article in this occasional series I
will create a better shared memory
object. Better than what? All other
shared memory objects floating
around the net? Yes, of course!

Primoz Gabrijelcic is the R&D
Manager of FAB d.o.o. in
Slovenia. You can contact him by
email at gp@fab-online.com

All code in this article is freeware
and may be freely reused in your
own applications.

Want More From The Web?
Is your website a hungry, snarling, beast, which
eats up server resources like they’re going out of
fashion? Does your web host keep suggesting
you find somewhere else to go?

TDMWeb can help.

Whether you want a custom hosting package
with extra storage space, extra data transfer,
or even a dedicated server all to yourself (totally
managed by us, hassle-free for you), or someone
to design your site, or someone to specify and
write your web applications, we’ll sort it.

And we’ll give you very competitive prices,
as well as our renowned customer service.

Call +44 (0)870 740 760 or email us
at sales@tdmweb.com to find out more

The Best N-Tier Development
System is now Better!

ASTA 3

Potent New Features - PLUS a
700 page PDF Manual - make it
easier than ever to build secure,
Thin-client, Cross Platform Data

Base applications.

Avoid burning development
time on low-level issues! Take a

moment and take the ASTA Tour.

ASTA Technology Group, Inc.
www.astatech.com

www.astawireless.com
info@astatech.com

To advertise in
The Delphi Magazine
call Leigh Foster on
+44 (0)1234 241454

or email her at
leighf@itecuk.com

