
32 The Delphi Magazine Issue 102

Shared Events
Part 2: Redesign
by Primoz Gabrijelcic

Today we will return to the
shared event system which I

described in Issue 97. I explained
the higher levels, but skimmed
over the implementation details.
For example, you don’t know yet
how shared tables (subjects,
events, etc) are stored internally. I
haven’t told you why the system is
so slow. To understand that, you
must know the answer to the first
question, so let’s start with it.

XML Storage
When designing shared structures
for the shared event system I
wanted to keep it open for any
future extensions. With that in
mind, I decided to use the storage
that is both standardised and
open, the extensible markup
language, or XML for short.

Each table is internally stored as
a quite simple XML document. A
typical example would be the Sub-
jects table, which you can see in
Figure 1 (slightly edited for read-
ability). At the moment when the
snapshot was made, the table con-
tained two producers and one lis-
tener (for the other tables, see the
implementation section of the
GpSharedEventsImpl unit).

As the tables must be common
to all applications in the same
namespace, they are stored in
shared memory blocks. The
storage mechanism is simple.

When saving, the document is con-
verted into a string and stored
inside this shared memory. To
read it, the code parses the shared
memory block and converts it back
to the internal XML representa-
tion. As you may have guessed, this
is not exactly the fastest operation
imaginable. The shared event
system does, however, implement
some trickery to reduce the
number of times XML document
is parsed.

XML-accessing logic is encapsu-
lated in the TGpSharedXML class
(OmniXMLShared.pas). While
most methods in this class are
quite simple, one deserves special
attention. Acquire (Listing 1),
which is called whenever the XML
needs to be accessed for reading
or writing, first acquires the shared
memory block holding the XML
document and then loads (parses)
that document. The result is stored
in the internal variable sxXMLDoc.
On the next Acquire, the underlying
memory block is first acquired and
then the code checks if it was modi-
fied in the meantime (the TGpSha-
redMemory object handles that
check for us). If no modifications
were made to the shared memory,
there is no need to reparse the con-
tents and Acquire can simply
return the cached sxXMLDoc.

Accessing the shared XML docu-
ment for reading is then fairly

trivial. The Read method only calls
Acquire and then immediately
releases the shared memory
block. After that, the XML docu-
ment is available in the sxXMLDoc
variable (which is also accessible
through the read-only property
XML). As the shared memory block
is already released when Read
returns, there is no need for the
caller to do anything when it has
completed the reading.

Modifying the XML is slightly
more complicated. An application
must call BeginUpdate to access the
writable copy of the document and
EndUpdate when it is done writing.
During that time, the underlying
shared memory block is locked for
all access. EndUpdate is also
responsible for saving the XML
document into the string and stor-
ing it into the shared memory
block.

For the XML implementation,
I’m using OmniXML (see www.
omnixml.com). It is simple to use,
fast, doesn’t require any external

function TGpSharedXML.Acquire(forWriting: boolean;
timeout: DWORD): TGpXMLDoc;

begin
Result := nil;
if sxSharedMemory.AcquireMemory(forWriting, timeout)
<> nil then begin
if (not sxSharedMemory.Modified) or
sxXMLDoc.LoadFromStream(sxSharedMemory.AsStream)

then
Result := sxXMLDoc;

if not assigned(Result) then
sxSharedMemory.ReleaseMemory;

end;
end; { TGpSharedXML.Acquire }
function TGpSharedXML.Read(timeout: DWORD): TGpXMLDoc;
begin
Result := Acquire(false, timeout);

EndUpdate;
end; { TGpSharedXML.Read }
function TGpSharedXML.BeginUpdate(timeout: DWORD):
TGpXMLDoc;

begin
Result := Acquire(true, timeout);

end; { TGpSharedXML.BeginUpdate }
procedure TGpSharedXML.EndUpdate;
begin
if sxSharedMemory.IsWriting then
sxXMLDoc.SaveToStream(sxSharedMemory.AsStream);

if sxSharedMemory.Acquired then
sxSharedMemory.ReleaseMemory;

end; { TGpSharedXML.EndUpdate }

➤ Listing 1: Accessing a shared XML document.

<SubjectsTable>
<Subjects>
<Subject>
<Handle>1</Handle>
<Name>Producer 1</Name>
<Token>Gp/GpToken/...

-9EF9ACC83F2B</Token>
<IsProducer>1</IsProducer>
<Interest>60</Interest>

</Subject>
<Subject>
<Handle>2</Handle>
<Name>Listener 1</Name>
<Token>Gp/GpToken/...

-E777548EE858</Token>
<IsProducer>0</IsProducer>

</Subject>
<Subject>
<Handle>3</Handle>
<Name>Producer 2</Name>
<Token>Gp/GpToken/...

-3E309EAAAFC9</Token>
<IsProducer>1</IsProducer>

</Subject>
</Subjects>

</SubjectsTable>

➤ Figure 1: XML representation
of the Subjects table.

February 2004 The Delphi Magazine 33

DLLs, works in Kylix (although the
shared memory implementation is
Windows only at the moment), and
I helped write it.

To simplify the code, the shared
event system doesn’t work with
the XML directly, but uses the class
mapping code from the OmniXML-
Properties unit (part of the
OmniXML code). For example, the
Subjects table is implemented with
only a few lines of code (Listing 2).
All the XML manipulation logic is
provided by the ancestor classes
TGpSEXMLData (a small wrapper
around OmniXMLProperties.TGpXML-
Data) and TGpXMLDocList. (Actually,
you’ll see in the code that
TGpSESubjectList contains many
other methods. As they are only
small helper routines, not directly
related to the way XML storage is
implemented, I have removed
them to simplify the example in
Listing 2.)

As this is getting rapidly off
topic, I won’t pursue XML binding
further. Maybe in a future article, if
the Editor will allow, I can describe

OmniXML and the accompanying
units in more detail.

Speed Issues
Now we can already guess where
the general sluggishness of the
shared event system comes from.
The trouble lies in the constant
XML loading and saving. Most of
the shared event system tables are
quite static, but that doesn’t hold
for the Event Queue table, where
new entries are inserted, modified
and deleted all the time.

To verify this assumption I fired
up my trusty GpProfile profiler
(http://gp.17slon.com/gpprofile). I
set up two instances of the testGp-
SharedEvents application from the
previous issue: one sending and
another receiving messages. Only
the sending part was instrumented
for profiling. Then I sent 500 events
(in bursts of ten) over the system.
After a few attempts (the trouble
with profiling is that it is very easy
to profile too little or too much) I
got the result that verified my
assumptions: the program spent
half its time loading and saving
XML streams (Table 1). With some
clicking in the profiler I also found

out that the Event Queue table is the
one that is constantly calling those
two methods. Another trafficky
table is Counters, but it is smaller
and less frequently accessed, and
doesn’t contribute to the slowness
nearly as much.

The results of this first profiling
session also reveal one strange
anomaly that points to a problem
in the shared event code. Of
course, I missed it completely at
that time and only found it a few
days later. If you don’t see it either,
don’t worry. I’ll come back to it
later.

Shared Tables
It seemed to me that the best way
to implement the Event Queue table
would be to store it in a sort of
table (in the database sense), of
course stored in the shared
memory. It’s kind of obvious, but
then most good ideas are. In my
usual way, I have wrapped the
shared table logic into a reusable
class TGpSharedTable (stored in
GpSharedTable.pas).

{:Subject entry in the Subjects table.}
TGpSESubject = class(TGpSEXMLData)
public
constructor Create(subjectNode: IXMLNode); override;
property Handle : TGpSEHandle index 0
read GetXMLPropSEHandle write SetXMLPropSEHandle;

property Name : string
index 1 read GetXMLProp write SetXMLProp;

property Token : string
index 2 read GetXMLProp write SetXMLProp;

property Interest : integer
index 3 read GetXMLPropInt write SetXMLPropInt;

property IsProducer: boolean
index 4 read GetXMLPropBool write SetXMLPropBool;

end; { TGpSESubject }
{:Data for the Subjects table.}
TGpSESubjectList = class(TGpXMLDocList)
public

constructor Create; reintroduce;
end; { TGpSESubjectList }
constructor TGpSESubject.Create(subjectNode: IXMLNode);
begin
inherited Create(subjectNode);
InitChildNodes(['Handle', 'Name', 'Token', 'Interest',
'IsProducer'],
[integer(CInvalidSEHandle), '', CInvalidSEToken, 0,
false]);

end; { TGpSESubject.Create }
constructor TGpSESubjectList.Create;
begin
inherited Create('SubjectsTable', 'Subjects', 'Subject',
TGpSESubject);

end; { TGpSESubjectList.Create }

➤ Listing 2: Implementation of
the Subjects table.

Procedure Time Time(sec) Calls Avg/Call(sec)

OmniXMLUtils.XMLLoadFromStream 40.70% 1.07495 123 0.00874

OmniXMLUtils.XMLSaveToStream 10.30% 10.30% 202 0.00134

GpSharedMemory.TGpBaseSharedMemory.GetSize 8.10% 0.21469 564532 0

GpSharedMemory.TGpSharedMemory.AcquireMemory 7.80% 0.20704 251 0.00083

OmniXMLShared.TGpSharedXML.Acquire 7.50% 0.1981 249 0.0008

GpSharedMemory.TGpSharedStream.Read 4.60% 0.12232 281455 0

GpSharedMemory.TGpBaseSharedMemory.GetAsStream 4.10% 0.10816 539485 0

OmniXMLUtils.GetNodeText 1.60% 0.04207 4331 0.00001

GpSharedEvents.TCustomGpSharedEventSubject.DoEventSent 1.40% 0.03765 33 0.00114

GpSharedMemory.TGpSharedStream.GetCurrentData 1.10% 0.02828 281178 0

➤ Table 1: Original code, ten
most CPU-intensive methods.

34 The Delphi Magazine Issue 102

Interface to the shared memory
table allows you to add and remove
entries (rows for you SQL people),
modify data, search for specific
values and iterate over stored
entries.

A shared table is of course
stored in the shared memory
block, implemented by the ubiqui-
tous TGpSharedMemory. At the begin-
ning of this shared memory lies a
small header. It is not explicitly
declared in the code but we can
still think of it as being declared as
a short packed record containing
five fields, a signature (used to
verify if the memory block indeed
contains a shared table), the
number of entries (rows), a small
alignment filler, and two headers
(one for the free list and another
for the used list: I’ll be discussing
those in a moment.).

This header is followed by the
table entries. They are not posi-
tioned sequentially after the
header, but can appear anywhere
in the shared memory, in any
order. The code can find all the
entries not because their
addresses are stored in some kind
of table, but because they are
linked in a doubly-linked list: the
first 4 bytes in each entry contain
the address of the next entry and
the next 4 bytes contain the
address of the previous entry.

Those addresses are absolute
offsets inside the shared memory
block (ie, the first byte of the
free list header has address 16).
The other option I considered
was to use an offset from the start
of the list header (the first byte of
the free list header would have
address 0; the same for the first
byte of the used list header, as
both would be calculated relative
to the start of the respective

header), but I chose the former
approach simply because it is
easier to debug.

In order to easily find free space
for new entries, the shared table
manages all the free space in a free
list, which contains free blocks,
again doubly-linked. In fact, the
same class (TGpSharedLinkedList
from GpSharedMemory.pas) is
responsible for both lists.

TGpSharedLinkedList implements
the doubly-linked list by using the
first eight bytes of each linked
block as a placeholder for the
pointers to the next and previous
blocks in the list. Both ends of
the list are protected by sentinels,
which are part of the header.
Although it is never declared as
such, the shared list header could
be represented by a packed record
holding a signature, the number
of entries in the list, a four-byte
alignment filler, a head sentinel
(containing next and previous
pointers) and a tail sentinel.

When the shared table is first
created, the used list is empty and
the free list contains only one
block, spanning the entire free
memory (even if it is not commit-
ted yet: TGpSharedMemory does that
for us automatically anyway).

When the application calls Add to
allocate new entry, nothing much
happens. The Add method only
clears the internal instance of the
object representing one table
entry and returns it. (Of course,
the application must have already
called BeginUpdate before that).
The application can then manipu-
late the entry, which keeps its data
in memory streams and doesn’t
manipulate the shared memory
contents at all. Only when it is
absolutely necessary that the
shared memory blocks reflect the
true state (for example when appli-
cation calls EndUpdate) is the entry
stored in the table.

At that moment, the AppendRow
method (Listing 3) is called. Its
only parameter contains the data
from the entry the application just
manipulated. After allocating a
new block of memory from the free
list (AllocateRow) the code writes
the entry directly into the shared
memory at the appropriate
address (rowStream.Read). It puts a
new block at the end of the used
list (stUsedList.EnqueueTail) and
updates the number of entries.
The state of the memory at that
moment is shown in Figure 2.

Another interesting part of the
code is the AllocateRowmethod. Its
main function is to find a free block
that can hold at least the specified
number of bytes. At the same time
it also tries to reduce memory frag-
mentation by implementing two
measures. The first is to round the
data size up to the nearest multiple
of 16. The calculation in the code is

function TGpBaseSharedTable.AllocateRow(dataSize: integer): integer;
begin
dataSize := ((dataSize + CEntryHeaderSize - 1) div 16 + 1) *
16 - CEntryHeaderSize;

Result := FindSmallestFreeBlock(dataSize);
if (DataLength[Result] - dataSize) >= (16 - CEntryHeaderSize + 16) then
stFreeList.EnqueueAfter(Result, SplitEntry(Result, dataSize));

stFreeList.Dequeue(Result);
end; { TGpBaseSharedTable.AllocateRow }
function TGpBaseSharedTable.AppendRow(rowStream: TStream): integer;
var baseAddress: integer;
begin
baseAddress := AllocateRow(rowStream.Size);
if baseAddress = 0 then
raise EGpSharedTable.CreateFmt('Shared memory %s is full', [Name]);

rowStream.Position := 0;
rowStream.Read(DataAddress[baseAddress]^, rowStream.Size);
stUsedList.EnqueueTail(baseAddress);
Result := NumberOfEntries;
NumberOfEntries := NumberOfEntries + 1;

end; { TGpBaseSharedTable.AppendRow }

➤ Listing 3: Appending new
entry to the shared table.

➤ Figure 2: Memory snapshot of an empty shared table

36 The Delphi Magazine Issue 102

quite convoluted because the code
must actually allocate 12 more
bytes than specified: 4 for the
pointer to the next entry, 4 for the
pointer to the previous entry, and
4 to hold the length of the
allocated area.

This free memory block is then
split into two parts: one for the
newly allocated data and another
to be kept in the free list. If the free
block is only slightly larger than
the requested size, it won’t be split
at all (this is the second anti-
fragmentation measure). In all
cases, the free memory block is
removed from the free list
(stFreeList.Dequeue) and its base
address is returned as a function
result.

When updating existing data,
UpdateRow is called instead of
AppendRow. It first locates the base
address of the entry being updated
(function LocateBase converts the
entry index into its base address).
Then it checks whether the new
entry is not larger than the already
allocated block. If so, the shared
memory is updated without
resizing the block (again, to mini-
mise fragmentation). If the entry
size grows the code must, how-
ever, allocate a new block (by call-
ing AllocateRow). It then puts the
new data into this block, adds it to
the end of the used list, and moves
the original block from the used list
to the free list.

In a similar manner, the Delete
method (not shown) locates the
base address for the entry, moves
the block from the used list to the
free list, and decrements the field
holding the number of entries.

Free List Fragmentation
The important thing here is that
Delete does not merge the newly
created free block with the other
free blocks, even if it is adjacent to
another block. The free memory
inside the shared table therefore
gets fragmented during the table
lifetime.

To fight these fragmentation
problems, EndUpdate calls the Defr-
agment method immediately before
releasing the memory block.
Defragment first checks if defrag-
mentation is required and quickly
returns if not. Currently, the table
is deemed ‘too fragmented’ if the
average free block size is not at
least twice as big as an average
used block (if you have any better
suggestion, I’m all ears).

If defragmentation is required,
the code builds a list of all the used
blocks and sorts it by the base
address. It then clears the used
lists, moves each block as near to
the beginning of the shared
memory block as possible, and
rebuilds the used list at the same
time. Finally the free list is cleared
and replaced with one entry
containing all the space left.

This method may reorder
entries: you have to live with that
or write a better Defragment.

Entry Address Cache
As you can see, the code exten-
sively uses LocateRow to convert
entry indices into base addresses.
This code becomes even more
important if we take a look at a
GetItem method (Listing 4), which
handles indexed access to stored
data. Basically, it locates the base
address of an entry, loads its con-
tents from the shared memory, and
returns the entry object.

As the application may examine
and modify fields in any order, the
shared table class needs to have a
fast mechanism for converting an
entry index into a base address. On
the other hand, an application may
only want to access a few entries.
In that case, it would not be appro-
priate to create an entire mapping
table (indices to addresses) each
time memory is accessed.

To solve both problems at once,
TGpSharedTable uses a semi-perma-
nent cache, which is only loaded
on demand. In other words, the
code only locates entries that the
application needs, but stores all
the resolved entries in the cache.
The cache is only cleared when
the shared memory block is modi-
fied by another TGpSharedTable
object.

To achieve that, LocateBase
method first asks the cache to
retrieve the base address for the
specified entry index, or at least an
address of the highest known
index. In the latter case, LocateBase
starts with the address returned
from the cache and uses the used
list pointers to walk the entries. It
does that until it reaches the end of
the list or the requested entry. In
addition, it stores all newly found
entries into the cache.

Fields
Each entry in the shared table is
represented by the TGpShared-
TableEntry object (or a descen-
dant: you can pass the class to be
generated to the TGpSharedTable
constructor), which is not gener-
ated dynamically, but stays static
through the lifetime of the
TGpSharedTable. This object should
only be accessed through the
Items property or Add method.

function TGpBaseSharedTable.LocateBase(rowIndex: integer):
integer;

var lastLowestItem: integer;
begin
if not stItemCache.RetrieveBase(rowIndex, Result,
lastLowestItem) then begin
while lastLowestItem < rowIndex do begin
if lastLowestItem < 0 then
Result := stUsedList.Head

else
Result := stUsedList.Next(Result);

Inc(lastLowestItem);
if Result = 0 then
break // while

else
stItemCache.Insert(lastLowestItem, Result);

end; //while
end;

end; { TGpBaseSharedTable.LocateBase }

function TGpBaseSharedTable.GetItem(idxItem: integer):
TGpSharedTableEntry;

var
baseAddress: integer;
rowStream : TGpFixedMemoryStream;

begin
if stInstance.Index <> idxItem then begin
baseAddress := LocateBase(idxItem);
if baseAddress <> 0 then begin
rowStream := TGpFixedMemoryStream.Create(
DataAddress[baseAddress]^,
DataLength[baseAddress]);

try
stInstance.Reload(idxItem, rowStream);

finally FreeAndNil(rowStream); end;
end;

end;
Result := stInstance;

end; { TGpBaseSharedTable.GetItem }

➤ Listing 4: Mapping entry index
into base address.

February 2004 The Delphi Magazine 37

From the application viewpoint,
TGpSharedTableEntry is pretty form-
less. It contains fields that can hold
formless (blob) data, and are only
accessed by the index (starting
from 0). In addition, all the table
entries don’t have to contain the
same number of fields. It is entirely
possible to store one field in one
entry and ten in another. All in all,
the structure is pretty flexible and
could be used as a basis for a more
rigid shared database manager.
Usually, it is best to wrap it in a
descendent class that defines
stricter access to the fields. To
help create such a class, TGpSha-
redTableEntry contains some
helper getters and setters that all
map to GetField and SetField
methods.

So how is the entry stored in the
shared memory? It’s quite trivial:
each field data item is prefixed by
the field data length (which may be
0, meaning the field is empty). The
end of the field data is signalled by
a length of -1. Usually, there will be
some unused space at the end of
the entry, because the block alloca-
tor allocates the memory in blocks
of 16 bytes.

To load the entry into working
memory, TGpSharedMemory calls the
entry’s Reload method (Listing 5),
passing it the index of the entry
and a stream containing the entry’s
data. Reload loads the length of
each field from the stream, auto-
matically creates a TMemoryStream
belonging to the entry, by access-
ing the Field property, and loads
the field’s data from the stream
into the TMemoryStream. It stops
when the field length is less than 0.
Finally it calls AfterFetch, which is

a do-nothing method in the base
class but may be overriden in the
derived class to add some addi-
tional processing (we’ll be using
this in the Event Queue table).

The automatic creation of per-
field memory streams is imple-
mented in the Field getter:
AccessField. This method simply
adds TMemoryStreams to the internal
steFields: TObjectList object until
it has reached the index requested.
In the current version of the code,
the fields are always created
sequentially, from 0 onward, and
AccessField could be much sim-
pler, but I prefer to write generic
code whenever it does not hurt
performance.

In fact, this generic approach
allows me to add fields on the fly
without further complications. For
example, let’s say that application
accessed an entry with five fields
(indices 0 to 4). It can then freely
access Field[10]. That will auto-
matically create empty fields [5] to
[9], which will then of course be
saved into the shared table.
Because all the magic is done in
AccessField, the GetField and
SetFieldmethods are very simple.

Shared Tables And
Shared Event System
Besides implementing the Event
Queue table as a shared memory
table instead of a shared XML

document, I have also imple-
mented the Counters table as a
shared table; or, to be more exact,
as a TGpSharedNamedCounters,
which is a simple wrapper around
the shared table. TGpShared-
NamedCounters manages a table of
counters, distinguished by names.
Each counter has one integer value
attached. The application can
query the current value of the
counter and increment it by one.

The most important aspect of
the shared counters class is its
educational aspect: it shows how
to create a descendant of the
TGpSharedTableEntry class (Listing
6). As you can see, no code was
required to construct a useful
class with named access to the
fields: we only had to declare two
properties that use accessor meth-
ods nicely provided by the
TGpSharedTableEntry class.

The declaration of the Event
Queue entry is quite similar, with
two additional twists (Listing 7).
Instead of working directly with
the GetFieldInt and SetFieldInt
accessors, it declares the methods
GetFieldHandle and and SetField-
Handle, which simply remap the
TGpSEHandle type into an integer
and back. It also implements a Lis-
teners field, which is a list of inte-
gers (and can be manipulated as
such by an application), but is
stored as a formless blob. Conver-
sion between the field data and the
list of integers is done in the
AfterFetch and BeforePost meth-
ods, which are called at the
appropriate time from the
TGpSharedTable code.

Profiling, Take Two
After all those modifications, it is
time for a new profiling session.
The results are encouraging.

procedure TGpBaseSharedTableEntry.Reload(rowIndex: integer; rowStream: TStream);
var
fieldLength: integer;

begin
InternalClear(tesCopy, rowIndex);
while (rowStream.Read(fieldLength, 4) = 4) and (fieldLength >= 0) do
if fieldLength > 0 then
Field[steFields.Count].CopyFrom(rowStream, fieldLength)

else
Field[steFields.Count]; // touch to create

AfterFetch;
end; { TGpBaseSharedTableEntry.Reload }
function TGpBaseSharedTableEntry.AccessField(fieldIndex: integer): TMemoryStream;
begin
while steFields.Count <= fieldIndex do
steFields.Add(TMemoryStream.Create);

Result := TMemoryStream(steFields[fieldIndex]);
end; { TGpBaseSharedTableEntry.AccessField }

➤ Listing 5: Loading shared table entry.

const
CCountersFieldName = 0;
CCountersFieldValue = 1;

type
TGpSharedNamedCountersEntry = class(TGpSharedTableEntry)
public
property Name: string index CCountersFieldName
read GetFieldStr write SetFieldStr;

property Value: integer index CCountersFieldValue
read GetFieldInt write SetFieldInt;

end; { TGpSharedNamedCountersEntry }

➤ Listing 6: Definition of the
shared named counters table
entry.

38 The Delphi Magazine Issue 102

The time is spent more evenly
and, what is even more important,
the total time spent in the profiled
code is much shorter. XMLLoad-
FromStream uses only 0.06 second.
In the first test, this number is
greater than one second.

What surprised me was that
there were still so many calls to
that method present. After some
clicking in the profiler, I discovered
that most calls come from the
PopulateListenersList, via Filter-
Subjects and BeginUpdate. While it
is true that FilterSubjects may
need write access, it is also true
that in most cases it requires only
read access. Because Filter-
Subjects acquires the shared XML
document for write access, the
memory access code modifies the
‘dirty’ flag and the XML document
is reloaded on the next read
access. (By the way, that was the
anomaly that was visible in the first
profiling session too, but which I
hadn’t noticed until this point.)

The problem is easily solvable,
though. I have modified Filter-
Subjects to only request read
access by default. The code will
acquire write access only if it
locates some problems that
require the subject table to be
modified (which is usually not the
case).

The next profiling session
showed that there were now only

17 calls to the XMLLoadFromStream
code and that it used only 13.3% of
the total time. With some more
research I have found out that it
was only called when subjects
and events were registered and
unregistered.

For the comparison, I have also
profiled the sending of 500 mes-
sages (in bursts of 10) from one
application to another. While the
XMLLoadFromStream was still called
17 times, it didn’t even make it into
the top 10.

Let’s take a look at the four most
CPU-intensive methods. We can’t
do much about the AcquireMemory
(it uses a slow Windows API),
EventSend (which spends most of
its time in the OnEventSent han-
dler), and GetXMLPropInt64 (which
is fast, but is called many times),
but maybe we can speed up Reload.

Most of the time Reload is called
from Locate, the function that iter-
ates over the table and compares
the given field in each entry with
some value. The trouble with
Locate is that it is programmed
exactly as described in the previ-
ous sentence. It iterates over the
table, loads each entry in turn
(with a call to Reload) and asks the
loaded entry to check if the field
passed to the Locate contains the
given value.

Loading the entire entry to
access only one field is not a very

const
CRecHandle = 0;
CRecEvent = 1;
CRecProducer = 2;
CRecData = 3;
CRecDataSize = 4;
CRecSharedMemory = 5;
CRecListeners = 6;

type
TGpSEEventQueueEntry = class(TGpSharedTableEntry)
private
eqeListeners: TGpSEHandleList;

protected
procedure AfterFetch; override;
procedure BeforePost; override;
function GetFieldHandle(idxField: integer):
TGpSEHandle;

procedure SetFieldHandle(idxField: integer; value:
TGpSEHandle);

public
constructor Create(owner: TGpBaseSharedTable); override;
destructor Destroy; override;
property Handle: TGpSEHandle index CRecHandle
read GetFieldHandle write SetFieldHandle;

property Event: TGpSEHandle index CRecEvent
read GetFieldHandle write SetFieldHandle;

property Producer: TGpSEHandle index CRecProducer
read GetFieldHandle write SetFieldHandle;

property Data: string index CRecData
read GetFieldStr write SetFieldStr;

property DataSize: cardinal index CRecDataSize
read GetFieldCardinal write SetFieldCardinal;

property SharedMemory: cardinal index CRecSharedMemory
read GetFieldCardinal write SetFieldCardinal;

property Listeners: TGpSEHandleList index CRecListeners
read eqeListeners;

end; { TGpSEEventQueueEntry }
procedure TGpSEEventQueueEntry.AfterFetch;
var
strListeners: TMemoryStream;

begin
inherited;
strListeners := TMemoryStream.Create;
try
GetFieldStream(CRecListeners, strListeners);
strListeners.Position := 0;
eqeListeners.LoadFromStream(strListeners);

finally FreeAndNil(strListeners); end;
end; { TGpSEEventQueueEntry.AfterFetch }
procedure TGpSEEventQueueEntry.BeforePost;
var strListeners: TMemoryStream;
begin
strListeners := TMemoryStream.Create;
try
eqeListeners.SaveToStream(strListeners);
if not EqualsField(CRecListeners, strListeners.Size,
strListeners.Memory^) then begin
strListeners.Position := 0;
SetFieldStream(CRecListeners, strListeners);

end;
finally FreeAndNil(strListeners); end;
inherited;

end; { TGpSEEventQueueEntry.BeforePost }

➤ Listing 7: Shared Event table entry.
effective way to solve the problem,
so I modified Locate, which now
works in a completely different
manner. It iterates over the used
list, passes the base address of
each entry to the TGpShared-
TableEntry class, and asks it to
return the position and size of the
field we are interested in. After
that, it compares the value at the
given position to the value passed
to the Locate method.

The advantage of this approach
is that entries are not fully loaded
into memory. The new code is,
however, slightly more compli-
cated and not much faster
compared to the older one.

That is all for today. We have
now got a much faster event
system (more than ten times faster
than the old one) and also three
new useful classes (shared table,
shared linked list and shared
named counters). Not bad for one
issue’s work, don’t you think?

Primoz Gabrijelcic is R&D
Manager of FAB d.o.o. in
Slovenia. You can contact him at
gp@fab-online.com

All code in this article is released
under the BSD license and may be
reused in your own applications.
Check http://gp.17slon.com/ for
updates to the published code.

