
42 The Delphi Magazine Issue 97

Shared Events Part 1:
Rationale, Design,
Implementation
by Primoz Gabrijelcic

Hello again. Today I won’t
bother you with the history of

this occasional series: you surely
know what I have been writing
about in previous issues of this
great magazine (if not, reread
Issues 86, 88, 91 and 95). In this
article I’ll describe a system that
allows multiple applications run-
ning on one computer to communi-
cate freely, without the limitations
of the Windows message-passing
system and without the complexity
of the shared memory or shared
data approach.

Motivation
I’m not usually writing code just for
the sake of coding. Sometimes, yes,
because I like to create and I like to
code, but most of the time my code
is written with a purpose in mind.
Today’s classes are no different. I
was writing a framework for an
all-in-one service, configuration
and monitoring program; that is, a
single exe that can be installed as a
Windows NT service, can be
started as a GUI application to con-
figure this service, can run in the
tray and display the service state,
and can even be used to install,
uninstall, start and stop the said
service. I stumbled into a big
problem. Both parts of the user
interface, monitoring and configu-
ration, had to know the current
state of the service. The former
needs it to display an appropriate
icon and the latter to optionally
restart the service when new
settings are applied. Sure, both
could be written by simply query-
ing the service controller, but that
would mean the monitoring part
must execute this query once
every few seconds. Whenever pos-
sible, I stay away from polling: it is
a bad programming habit.

I looked into several possibili-
ties, from the simple message-
based approach (PostMessage) to a
TCP/IP server implemented inside
the service, but in the end I
decided on a distributed server-
less solution using basic Windows
synchronisation primitives to
communicate and shared memory
to hold the shared data. I designed
it as an event broadcasting system,
where applications can announce
their ability to provide some kind
of an event (publish the event) or
their interest in the same event
(monitoring the event).

The application would then
broadcast the event to all inter-
ested parties, which will receive
this event some short time after.
The application that is publishing
the event (the producer) does not
have to know how many monitor-
ing applications (the listeners) are
alive: one or more, or maybe even
none. On the other hand, the lis-
tener doesn’t have to know if the
producer (or producers, as there
can be more than one publisher of
that event) is alive or not, it just
has to register its interest in the
event.

Shared event system, as I nick-
named this approach, is imple-
mented as a shared set of in-
memory tables, which are
accessed and manipulated by pro-
ducers and listeners. The impor-
tant part is that there is no
dedicated server: housekeeping is
distributed between the producers
and listeners.

In the first approach to the prob-
lem, each producer could see all
the listeners on the same com-
puter and vice versa. I have, how-
ever, decided against that
approach. I think that it is best to
contain producers and listeners in

small communities that can’t inter-
act with each other. The shared
event system belonging to one pro-
ject (which can, of course, consist
of many applications) can be com-
pletely separated from the shared
event system of another project,
even if both are running at the
same time on the same computer.

To facilitate that, I have intro-
duced the well-known concept of
the namespace. Each subject (pro-
ducer or listener) has a namespace
(a simple string) assigned and only
subjects within the same name-
space can see each other. I usually
use hierarchically named name-
spaces with a GUID inserted some-
where to guarantee uniqueness,
for example:

/Gp/SampleProject/854BAE86-
4E63-48B8-AC92-A0BE7BD51E41

but you are free to use anything
inside this string.

Such a complex system surely
has some limitations. The most
important one is that it is kind of
slow. I don’t recommend it for
activities that are expected to trig-
ger more than one event per
second, on average (or a few
events per second on faster com-
puters). That may change in future
releases, though, so stay tuned.
The second limitation is that the
shared event system is a local solu-
tion: you cannot use it to communi-
cate between computers, but then
it wasn’t designed with that usage
in mind.

If you are interested in the
all-in-one service, monitoring and
configuration framework, I’m
afraid you will have to wait a few
months: I’ll describe it in a future
article.

Simple Demonstration
For starters, let’s see how the code
described in this article is used.
When you install the package from
this month’s code archive, you’ll
get two additional components on
the Gp tab: GpSharedEventProducer
and GpSharedEventListener. Start a
new project and drop both compo-
nents on its main (and only) form
(or open the Intro1 project avail-
able in this month’s code).

September 2003 The Delphi Magazine 43

What we want to do in this dem-
onstration is to send a notification
from an application to all listening
applications each time the user
clicks a button. This is not a com-
plicated task, I admit, but still one
that nicely demonstrates the use of
the shared event components.

For starters, we have to connect
the listener and producer. This
is established by setting the
Namespace property in both of
the components to the same value;
for example GpSharedEvents/Intro-
duction.

Next, we must select the name
for the event that will be triggered
by the user. We can, for example,
name it ButtonClicked (If we
compare the shared event system
with Delphi events, this name
would roughly correspond to the
name of the event handler, for
example OnClick). But before we
can trigger this event, we must pub-
lish it. To do so, just select the
Producer component, double-click
on the PublishedEvents property,
and enter ButtonClicked into the
editor.

That allows us to broadcast
the event with a call to the
BroadcastEvent method. To test it,
put a button on the form, double-
click it and enter the one-liner
shown in Listing 1.

This simple code tells the Pro-
ducer component to broadcast the
event ButtonClick to all interested
listeners. To declare its interest,
the listener must monitor the
event. Monitoring an event is as
simple as publishing it: just select
the Listener component, double-
click on the MonitoredEvents prop-
erty, and enter ButtonClicked into
the editor.

Now we only have to react to this
event. To do so, write the
OnEventReceived event handler (see
Listing 2).

As you can see, the shared
events infrastructure doesn’t yet
allow you to write a specific event
handler for each monitored event.
You must write a generic handler
and then test for possible events
inside it. This is not a very good
design and will be most probably
be fixed very soon (hopefully
before the next article in this series
comes out). You can be sure, how-
ever, that OnEventReceived will
stay: it will still have some uses (for
example, to log all the events in a
central place).

Compile this application and
start three instances of it. Click the
button in any of those instances
and you’ll see that the caption bar
in all three instances will update
(see Figure 1).

Let’s iron out two little glitches
in this application (which again
may not be glitches at all: it all
depends on your viewpoint). The
first little ‘problem’ is that all
instances are notified on the
button click, even the one that
broadcasts the event. The second
problem is that the time displayed
in receiving instances differs,
which is quite reasonable as it is

sampled on the listener side and
not generated on the producer.

To solve the latter problem, we
should record the time on the pro-
ducer and broadcast it to listeners.
The BroadcastEvent method facili-
tates this by providing a second
parameter that is by default set to
an empty string. This second
parameter is passed to all Lis-
teners in the form of the eventData
parameter of the OnEventReceived
handler.

The former problem can be
solved in more than one way. The
code that is broadcasting the
event could, for example, remove
ButtonClicked from the list of moni-
tored events before broadcasting
(and then add it back). While good
enough for this demonstration
program, this could cause a
problem inside a real-world appli-
cation. If another application
broadcasts the same event while it
is disabled in the first application,
it (the first application) won’t see
that broadcast.

A better approach is to check
the producer’s handle (the ID
assigned to each producer and lis-
tener, which is unique in the
namespace) and compare it with

procedure TForm1.Button1Click(Sender: TObject);
begin
GpSharedEventProducer1.BroadcastEvent('ButtonClicked');

end; { TForm1.Button1Click }

➤ Listing 1: Broadcasting an event.

procedure TForm1.GpSharedEventListener1EventReceived(Sender: TObject;
producerHandle: TGpSEHandle; const producerName, eventName, eventData: String);

begin
if eventName = 'ButtonClicked' then
Caption := 'Button was clicked at '+FormatDateTime('hh:mm:ss.zzz', Now);

end; { TForm1.GpSharedEventListener1EventReceived }

➤ Listing 2: Receiving an event.

procedure TForm1.Button1Click(Sender: TObject);
begin
GpSharedEventProducer1.BroadcastEvent('ButtonClicked',
FormatDateTime('hh:mm:ss.zzz', Now));

end; { TForm1.Button1Click }
procedure TForm1.GpSharedEventListener1EventReceived(Sender: TObject;
producerHandle: TGpSEHandle; const producerName, eventName, eventData: String);

begin
if (eventName = 'ButtonClicked') and
(producerHandle <> GpSharedEventProducer1.ProducerHandle) then
Caption := 'Button was clicked at '+eventData;

end; { TForm1.GpSharedEventListener1EventReceived }

➤ Listing 3: Changes in the
Intro2 application.

➤ Figure 1

44 The Delphi Magazine Issue 97

the handle of the GpSharedEvent-
Producer1. If they are the same, this
event was generated internally and
should be ignored (see Listing 3).
Both changes are implemented in
the project Intro2.

The last issue I have with this
code is that the name ButtonClick
is a literal string, which we have
entered four times: this is a great
opportunity to introduce some
hard to find error. It would be
better to make it into a constant.
While that causes no problem with
the Button1.OnClick handler and
the GpSharedEventListener1.OnEve-
ntReceived handler, we have to
add some code to cover the initial-
ization. We are not able to modify
the PublishedEvents and Monito-
redEvents properties in the Object
Inspector (because we cannot
enter the name of the constant
holding the event name here), so
we must do that in code. Instead
of working on those properties
directly (both of them are pretty
simple TStringLists), we can just
call the PublishEvent and Monitor-
Event methods (see Listing 4).
Project Intro3 implements this
change.

While we’re on the topic I should
mention that there are also
UnpublishEvent and IgnoreEvent
methods which remove the event
from the PublishedEvents and
MonitorEvents lists.

Data Model
Before we plunge into the depths of
the shared events code and dis-
cover how it works without a dedi-
cated server process, let’s examine
the data model. For the time being,
just imagine that there is a server
(an SQL server, if you want) that
manages a few tables for us (see
Figure 2).

Shared data is split into four
main tables (which, I must immedi-
ately admit, are not really normal-
ised as you would expect database
tables to be) and one helper table.
Of the main tables, Subjects con-
tains all the active producers and
listeners, Events holds all the pub-
lished and/or monitored events,
Subjects-Events specifies connec-
tions between Subjects and Events
and Event Queue keeps all the
events currently being broad-
casted. A helper table, Counters,
just contains name/value pairs,

and helps implement
global counters, used
to allocate unique
handles for our
entities.

The Subjects table
contains information
on active producers
and listeners. Each
has a unique handle, a
(potentially empty)
name, which is used
only for cosmetic pur-
poses (for example,
when you want to enu-
merate all producers)
and a flag that speci-
fies whether this is a
producer or listener
(IsProducer). Each
subject also contains

a unique token (tokens are system-
wide unique strings, in case you
skipped Issue 86.) The last field,
Interest, specifies the event
classes this subject is interested
in. In short, this field allows the
event engine to optimize some
system broadcasts, for example
when a new subject appears in the
system. I’ll explain this process in
more detail later.

A much simpler table, Events,
contains the names of all regis-
tered events (either published or
monitored) and their associated
handles.

Connections between subjects
and events are stored in the
Subjects-Events table. Each pub-
lished event creates a new entry
containing producer and event
handles. In a similar manner, each
monitored event creates an entry
with listener and event handles.
As a simple optimisation, the
IsProducer field contains a Boolean
value indicating whether the table
row belongs to the producer or
listener. This table is used when an
event is broadcasted. To build the
list of interested listeners, the
publisher iterates over the table
and selects all listeners (ie, where
IsProducer = false) that registered
interest in that event.

Finally, the most important and
busiest table, Event Queue, con-
tains all the active events. Those
are the events that were broad-
casted and are still waiting to be
processed by at least one listener.
Each broadcast is represented
with one entry in this table and

const
CButtonClicked = 'ButtonClicked';

procedure TForm1.Button1Click(Sender: TObject);
begin
GpSharedEventProducer1.BroadcastEvent(CButtonClicked,
FormatDateTime('hh:mm:ss.zzz', Now));

end; { TForm1.Button1Click }
procedure TForm1.GpSharedEventListener1EventReceived(Sender: TObject;
producerHandle: TGpSEHandle; const producerName, eventName, eventData: String);

begin
if (eventName = CButtonClicked) and
(producerHandle <> GpSharedEventProducer1.ProducerHandle) then
Caption := 'Button was clicked at '+eventData;

end; { TForm1.GpSharedEventListener1EventReceived }
procedure TForm1.FormCreate(Sender: TObject);
begin
GpSharedEventProducer1.PublishEvent(CButtonClicked);
GpSharedEventListener1.MonitorEvent(CButtonClicked);

end; { TForm1.FormCreate }

➤ Listing 4: Event name as a
constant.

➤ Figure 2

September 2003 The Delphi Magazine 45

contains a unique handle, which
the code uses internally during
the event dispatch (and which,
incidentally, is also returned as a
result of the BroadcastEvent call).
As we need to know who broad-
casted the event and which event
is in question, each entry also con-
tains a subject handle and an event
handle. There can be more than
one recipient of the broadcast,
therefore we need a list of listeners
(their handles), which is stored in
the Listeners field.

That covers the housekeeping
needs, but we still have to store the
message data somewhere. Small
messages (under 1Kb) are kept in
the table, in the Data field, while
larger messages are offloaded into
a shared memory block (one per
event queue entry), whose name is
stored in the SharedMemory field. In
both cases, DataSize stores the
message data size. This message
offloading is actually a dirty hack,
designed to speed up message
delivery, and is tightly connected
to the fact that all the tables
are stored internally as XML

document. In fact, this XML repre-
sentation is not really suitable for
the Event Queue and I suspect that
internal representation of this
table will be changed in the future
releases.

Broadcasting
To better understand how those
tables are used, let’s take a look
at what happens when you run
the Intro3 program. (Note that all
the component-related code is
stored in the GpSharedEvents.pas
unit, while the GpSharedEvents-
Impl.pas unit contains the imple-
mentation of the shared event
system.)

During the main form creation,
the program creates an instance of
the TGpSharedEventProducer com-
ponent. When it is activated (the
Active property is loaded or set in
code), the code creates a token
and registers producer in the Sub-
jects table. The registration code
first checks if that token exists in
the table (if it does, the existing
handle is returned), then allocates
a new handle (with the help of

the Counters table) and inserts a
new entry into the table.

A moment later, TGpShared-
EventListener is created and regis-
tered in the Subjects table in the
same manner.

The next part of the initialisation
happens in the form’s OnCreate
handler. First, PublishEvent is
called, which registers the event in
the Events table. Event registration
is very similar to subject registra-
tion: if an event with that name
already exists in the table, the
existing handle is returned, other-
wise a new handle is allocated.
After that, PublishEvent adds a new
entry containing the producer
handle and event handle into the
Subjects-Events table.

When MonitorEvent is called, the
event will already exist in the
Events table and only its handle
will be retrieved. Of course, a new
entry containing the listener
handle and event handle will still
be added to the Subjects-Events
table.

That concludes the initialisation
phase. Now we have two entries in

46 The Delphi Magazine Issue 97

the Subjects table (one for the pro-
ducer and another for the listener),
one entry in the Events table (for
the ButtonClicked event) and two
entries in the Subjects-Events table
(one for the producer and another
for the listener). If we start a new
instance of the Intro3 application,
we’ll get two new entries in the
Subjects table and two in the
Subjects-Events table.

Interesting things start happen-
ing when a user clicks a button and
triggers a BroadcastEvent call,
which quickly passes control to
the InternalBroadcastEvent (see
Listing 5). This first creates a list
of all listeners interested in the
event. If there is no such listener,
the code triggers the producer’s
OnEventSent event (a Delphi event,
to make sure we understand each
other: the classic kind you can set
up in the Object Inspector) and
exits. From the viewpoint of the
producer, the event was just sent
to all interested parties.

If there are listeners interested
in that event, the code checks the
size of the event data (the data
associated with the event: the
second parameter of the Broad-
castEvent method) and offloads
the data into a newly created
shared memory block if required.

At the end, the broadcasting
code inserts all information on this
broadcast into the Event Queue
table, allocating a new event queue
handle in the process, and notifies
all interested listeners that a new
event is waiting in the event queue.

The newly allocated event queue
handle is also returned as the
BroadcastEvent result.

How exactly does this ‘notifying
the listeners’ work? Simply by
using Windows events (Create-
Event). Each subject (either pro-
ducer or listener) creates one
event with a well-known name. The
name of this event is constructed
from the subject’s token (which
other subjects can look up in the
Subjects table) with the suffix
$NotificationEvent (see Listing 6).
To prevent problems when
signalling over the NT desktop (for
example, from a service to a GUI
application), this event is created
with ‘allow all’ access (see Issue 91
for more detail on NT access
protection). In addition, each

subject creates one internal
window (created with Allocate-
HWnd) and a thread which waits on
this event. Whenever the event
gets signalled, the thread sends a
windows message to its owner.

Receiving
So where are we now? The Pro-
ducer has inserted a new entry into
the Event Queue table and has fin-
ished its job by signalling the lis-
tener’s notification event. This
event wakes up the listener’s noti-
fication thread, which sends an
internal message to the listener’s
internal window. This message is
processed by the window’s
WndProc method, which calls the
InternalProcessAndRemove method
(Listing 7).

class function TGpSharedEventManager.MakeNotificationEventName(const tokenName:
string): string;

begin
Result := tokenName + '$NotificationEvent';

end; { TGpSharedEventManager.MakeNotificationEventName }
function TGpSESubjects.NotifyListeners(listeners: TGpSEHandleList): boolean;
var
iListener : integer;
iSubject : integer;
notificationEvent: THandle{CreateEvent};
subjects : TGpSESubjectList;

begin
subjects := AccessSubjects;
if not assigned(subjects) then
Result := SetError(Ord(semErrNotAcquired), sFailedToAcquiredSharedMemory,
[seSubjData.Name, CSubjectsTimeout])

else begin
for iListener := 0 to listeners.Count-1 do begin
iSubject := subjects.IndexOf(listeners[iListener]);
if iSubject >= 0 then begin
notificationEvent := OpenEvent(EVENT_MODIFY_STATE, false,
PChar(TGpSharedEventManager.MakeNotificationEventName(
subjects[iSubject].Token)));

try
if notificationEvent <> 0 then
SetEvent(notificationEvent);

finally CloseHandle(notificationEvent); end;
end;

end; //for
Result := ClearError;

end;
end; { TGpSESubjects.NotifyListeners }

➤ Listing 6: Notifying all listeners.

function TGpSharedEventManager.InternalBroadcastEvent(
out eventQueueHandle: TGpSEHandle; const eventName,
eventData: string; excludeListener, sendOnlyTo:
TGpSEHandle; interestFlags: integer): boolean;

var
eventDataCopy: string;
eventDataSize: cardinal;
eventHandle : TGpSEHandle;
listeners : TGpSEHandleList;
publishes : boolean;
sharedMemory : TGpSharedMemory;

begin
eventDataCopy := eventData;
eventDataSize := Length(eventDataCopy);
listeners := TGpSEHandleList.Create;
try
Result := PopulateListenerList(listeners, eventName,
sendOnlyTo, excludeListener, interestFlags,
eventHandle);

if Result then begin
publishes := true;
if (eventName <> CSystemEvent) and
(not emSEMappings.SubjectPublishes(emSubjectHandle,
eventHandle, true, publishes)) then
Result := SetError(emSEMappings)

else if not publishes then
Result := SetError(Ord(semErrInvalidEvent),
sSubjectDoesntPublishEvent, [eventName,
eventHandle])

else begin
if listeners.Count > 0 then begin
OffloadLargeMessage(eventDataCopy, sharedMemory);
if not emEventQueue.Insert(eventHandle,
emSubjectHandle, eventDataCopy, eventDataSize,
listeners, sharedMemory, eventQueueHandle) then
Result := SetError(emEventQueue)

else if NotifyListeners(listeners) then
Result := ClearError;

end else begin // nothing to do = all done
if eventName <> CSystemEvent then
if assigned(emOnEventSent) then
emOnEventSent(self, eventQueueHandle,
eventHandle, eventName);

Result := ClearError;
end;

end;
end;

finally FreeAndNil(listeners); end;
end; { TGpSharedEventManager.InternalBroadcastEvent }

➤ Listing 5: Broadcasting.

September 2003 The Delphi Magazine 47

At that moment, the listener
cannot know how many events are
waiting to be processed in the
Event Queue. It is entirely possible
that more than one producer has
signalled its notification event
before the listener’s thread could
be awaken. The listener must
therefore scan the entire Event
Queue and process all the
events which have its handle listed
in the Listeners field.

If by any chance the Event Queue
cannot be locked for exclusive
access (this can happen if lots of
producers and listeners are pass-
ing events around), an internal
message is generated. This mes-
sage will reach the WndProc and
InternalProcessAndRemove will be
triggered again. Therefore we
can be assured that each event will
reach all the listeners sooner or
later.

For each event queue entry the
listener first retrieves the event
data from the shared memory (if
the data was offloaded there), then
it triggers the OnEventReceived
event and removes itself from the
Listeners field. If this was the last
listener in the list, the code will
notify the producer that the event
was sent to all intended receivers.
This notification uses the same
mechanism as ordinary event
broadcasting: the listener gener-
ates an internal event (which,
unlike user events, has an empty
name associated with the other-
wise invalid handle), with the

event queue handle stored in the
event data, and sends it back to the
producer.

Of course, this means that now
the listener must insert a new entry
into the Event Queue table and
signal the producer’s notification
event. The producer’s notification
thread receives this event and
posts an internal message to the
producer’s internal window,
where it is processed by the
WndProc. Just like when the pro-
ducer broadcasted the event in the
first place, just reversed.

The code that processes this
internal message in the producer
just removes the appropriate
entry from the Event Queue and
destroys the shared memory (if it
was created in the first place). At
the end, it triggers the producer’s
OnEventSent event. Somewhere
along the line, it also removes the
internal event from the Event Queue
table.

Oh, yes, I almost forgot: how
does the application know which

procedure TGpSharedEventManager.InternalProcessAndRemove(
eventQueueHandle: TGpSEHandle; doProcess: boolean);

var
eqEntries : TGpSEHandleList;
eventData : string;
eventHandle : TGpSEHandle;
eventProducer : TGpSEHandle;
eventQueue : TGpSEEventQueueList;
eventQueueEntry : TGpSEEventQueueEntry;
iEventQueue : integer;
sendNotification: boolean;

begin
eventQueue := emEventQueue.BeginUpdate;
if not assigned(eventQueue) then begin
if emEventQueue.LastError = Ord(semErrNotAcquired) then
// Timeout - work around it. We really _must_ remove
// the listener from the event queue.
Trigger(emMsgRemoveFromEventQueue,
WPARAM(eventQueueHandle), 0)

else
raise EGpSharedEventManager.Create('Failed to allocate
event queue');

end else begin
sendNotification := false;
eventProducer := 0; // to keep Delphi happy
try
eqEntries := TGpSEHandleList.Create;

try
eventQueue.GetAllEntriesForListener(emSubjectHandle,
eqEntries);

for iEventQueue := 0 to eqEntries.Count-1 do begin
eventQueueEntry :=
eventQueue.Locate(eqEntries[iEventQueue]);

eventQueueHandle := eventQueueEntry.Handle;
eventProducer := eventQueueEntry.Producer;
eventHandle := eventQueueEntry.Event;
if doProcess then begin
ReloadLargeMessage(eventQueueEntry, eventData);
if eventHandle = CInvalidSEHandle then
ProcessSystemEvent(eventData, eventProducer)

else
ProcessUserEvent(eventHandle, eventProducer,
eventData);

end;
sendNotification := RemoveListener(eventQueue,
eventHandle, eventProducer, eventQueueHandle,
emSubjectHandle);

end; //for iEventQueue
finally FreeAndNil(eqEntries); end;

finally emEventQueue.EndUpdate; end;
if sendNotification then
NotifyEventSent(eventProducer, eventQueueHandle);

end;
end; { TGpSharedEventManager.InternalProcessAndRemove }

➤ Listing 7: Receiving

➤ Figure 3

48 The Delphi Magazine Issue 97

event was just fully sent when
OnEventSent is triggered? Simple:
the same event queue handle that
was returned as a BroadcastEvent
result is passed to the OnEventSent
parameter.

The whole broadcasting process
is depicted in Figure 3.

That concludes our tour. Really.
Except that there are some addi-
tional bells and whistles built
into the shared event system
which I have not yet got around to
discussing.

(Not So) Hidden Extras
Although the last section of this
article covers event sending and
receiving in detail, some parts of
the code were skipped for the sake
of clarity. Most notably, I have not
yet mentioned the validity scans.
When some part of the code
detects that the remote subject
does not exist anymore (by check-
ing the validity of subject’s
token), it triggers a full validity
re-scan.

The validity checker iterates
over the Subjects table and verifies
existence of all subjects. Along the
way, it creates a list of all invalid
subjects. After that, it iterates over
the Subjects-Events, Event Queue
and Subjects tables and removes
invalid subjects from all the
relevant fields (see Listing 8).

Another feature I have not yet
mentioned is support for registra-
tion and deregistration notifica-
tions. When a subject registers
into the system or deregisters from
it, when an event is published or
monitored (or unpublished or
ignored), a special internal mes-
sage is sent to all listeners that
show interest in such an event.

From the user’s (programmer’s)
viewpoint not much has to be done
to enable these notifications.
When you set up the appropriate
event (such as OnProducerRegis-
tered, OnEventPublished, etc) in the
Object Inspector, the property
setter updates the value of the
Interest field in the Subjects table.
When a subject makes a change
that causes registration or deregis-
tration of some kind, it also col-
lects all subjects that are
interested in that kind of change

(by checking the Interest field for
all registered subjects) and then
generates an internal message
describing the change that is sent
only to interested subjects. This
approach minimises event flow
through the system while still
allowing every producer and lis-
tener to be informed of changes
inside the system.

I also haven’t mentioned the
SendEvent method. It allows you to
send an event to only one listener.
This is especially useful in the
OnEventMonitored handler. When-
ever a producer detects an interest
in the event it provides, it can
immediately send the interested
party some data. For example, that
allows my service, configuration
and monitoring program to inform
the monitoring part of the current
service state as soon as the moni-
tor shows interest in the appropri-
ate event.

There is also a way to access all
the registered producers (the
Producers property), listeners
(the Listeners property), pub-
lished events (PublishedEvents),

monitored events (Monitored-
Events) and all registered events
(Events). All are simple
TStringLists.

All features of the shared event
system are demonstrated in the
testGpSharedEvents application
(which is included in this month’s
source code, of course).

Next time we will take a look at
how the shared tables are imple-
mented internally and we’ll try to
make the whole shared event
system work faster. Till then, have
fun with the current implementa-
tion and feel free to comment on it
via email.

Primoz Gabrijelcic is R&D Man-
ager of FAB d.o.o. in Slovenia.
You can contact him at gp@
fab-online.com. All code in this ar-
ticle is freeware and may be freely
reused in your own applications.
Check http://gp.17slon.com for
updates to the published code.

procedure TGpSharedEventManager.ValidityRescan;
var
subjectList: TGpSEHandleList;

begin
subjectList := TGpSEHandleList.Create;
try
try
if not emSubjects.CollectInvalidSubjects(subjectList) then
Abort;

if subjectList.Count > 0 then begin
if not emSEMappings.RemoveInvalidSubjects(subjectList) then
Abort;

if not emEventQueue.RemoveInvalidSubjects(subjectList) then
Abort;

if not emSubjects.RemoveInvalidSubjects(subjectList) then
Abort;

end;
except
on EAbort do
TriggerValidityRescan;

end;
finally FreeAndNil(subjectList); end;

end; { TGpSharedEventManager.ValidityRescan }

➤ Listing 8: Validity checks.

