
42 The Delphi Magazine Issue 91

Synchronisation
Toolkit Revisited
by Primoz Gabrijelcic

Here I am, back with my favour-
ite theme: interprocess syn-

chronisation and communication.
If you are new to The Delphi Maga-
zine I should warn you that this is
the third article in an occasional
series, so you may like to start
reading at the beginning: check out
Issues 86 and 88.

The plan for this article was to
present an implementation of a
shared memory pool: a mechanism
that allows multiple data produc-
ers to send data to one data manip-
ulator. In fact, I already had all the
code and half the article completed
when I found out that my solution
doesn’t always work. Everything
was OK when both ends of the pool
(producer and manipulator) were
implemented in the same applica-
tion or in two ‘normal’ applica-
tions. But if I tried to change one of
those apps into an NT service, the
shared pool stopped working.

While searching for the bug I
found that actually I ran into two
problems: CreateMutex called from
the application was not able to
open the same mutex created in
the service, and PostThreadMessage
was unable to send a message from
the application to the service. To
release the tension I must admit
that both problems are fixed and
new TGpSharedMemoryPool is work-
ing fine. I’ll describe its innards in
the next article.

This article is completely
NT-related (and that includes Win-
dows 2000 and XP). None of those
problems apply to the 9x platform.

CreateMutex
So what is wrong with the
CreateMutex function? Let’s exam-
ine a simple scenario. We have two
processes both calling CreateMutex
with the same mutex name. Their
intentions are obvious: they want
to use this mutex to synchronise
access to some shared resource.

When the first process calls
CreateMutex, it will return a mutex
handle and set the error code
(GetLastError) to NO_ERROR as
expected. Then the second pro-
cess calls CreateMutex. That call
will also return a mutex handle but
the error code will be ERROR_
ALREADY_EXISTS. That way our pro-
cess knows that the mutex was
already created and that the kernel
was smart enough to open that
mutex instead of creating it.

That’s fine, but what if one of
those processes is actually a ser-
vice? In that case, only the first pro-
cess can access the mutex. The
second one will get a null mutex
handle and the error code ERROR_
ACCESS_DENIED. That is quite con-
fusing, as this error is not men-
tioned in the CreateMutex
documentation. Still, a quick
search in MSDN found that this is
intentional. There is a boundary
between services and normal
applications that kernel objects
(mutexes, events, files, etc) cannot
cross without special preparation.
MSDN states that ‘Most services
are installed in the local system
account and run with special secu-
rity rights as a result. Processes
running in the local system
account grant GENERIC_ALL access
to other processes running in the
local system, and READ_CONTROL,
GENERIC_EXECUTE, and GENERIC_READ
access to members of the Adminis-
trators group. All other access to
the object by any other users or
groups is denied. All calls to
CreateMutex implicitly request
MUTEX_ALL_ACCESS for the object in
question. An interactive user does
not have the rights required to
obtain a handle to an object cre-
ated from the local system security
context as a result.’

So this is a security question. As
such, there should be a way to
work around it. MSDN continues:

‘There are several solutions to this
problem: You can set the security
descriptor in your call to Create-
Mutex to contain a NULL DACL. An
object with NULL-DACL security
grants all access to everyone,
regardless of security context... A
second option would be to create a
security descriptor that explicitly
grants the necessary rights to the
built-in group: Everyone. In the
case of a mutex, this would be
MUTEX_ALL_ACCESS. This is prefera-
ble because it will not allow mali-
cious (or buggy) software to affect
other software’s access to the
object.’

Gosh, what a mess. Security
descriptor, DACL, security con-
text... I must admit that I’ve spent
quite some time looking for an
answer, which I found in the
Borland newsgroups (thanks go to
the Tamarack Associates search
engine at www.tamarack.com).
Then I struggled to understand the
answer and in the end I tried to
find the missing information in
MSDN. Finally I tried to remove all
the unimportant stuff and reduce
my collected material to a few
pages in this magazine.

A Crash Course In NT Security
A one line solution to the Create-
Mutex problem is to use the lpMut-
exAttributes parameter. Now
everyone will jump to the Delphi
help and return unsatisfied: all
that the help has to say is: ‘The
lpSecurityDescriptor member of
the structure specifies a security
descriptor for the new mutex. If
lpMutexAttributes is NULL, the
mutex gets a default security
descriptor.’ But what does the
lpSecurityDescriptor member
point to and how can we create
this structure?

Before we get to the answer, I
must point out that most of the API
functions we need are not declared
in the Windows unit, at least not in
the one that is included with
Delphi 5 (which I’m still depending
on). Therefore, I have used a much
better API translation, written by
Marcel van Brakel. You can get it at
www.delphi-jedi.org (click on the
API Library link on the left, then
find Win32API.zip).

March 2003 The Delphi Magazine 43

Let us first get some overview of
NT security. When a user logs to
the NT, the system authenticates
the user’s account name and pass-
word. If the logon is successful, the
system creates an access token
(see the sidebar A Little Security
Dictionary). It contains a security
identifier that identifies the user’s
account and any groups to which
the user belongs. Every process
executed on behalf of this user will
carry a copy of this access token.

The token also contains a list of
the privileges held by the user (or
the groups it belongs to), but we
will skip that part.

More important is the other
aspect of NT security, which is not
associated with the logon session,
but with the kernel object itself.
When a securable object is cre-
ated, the system assigns it a
security descriptor that contains
security information specified by
the object’s creator (or default

security information if none is
specified). What we usually do is
pass a nil pointer for the lpMutex-
Attributes parameter (or other
parameter of the PSecurityAttr-
ibutes type) implying that we want
the kernel to assign default secu-
rity information to this mutex. But
we already knew that. The real
problem lies in the security
descriptor: what it contains and
how we can build one.

A security descriptor contains
three things. It identifies the
object’s owner, optionally con-
tains a DACL, and (also optionally)
a SACL. To deal with the least
important first, SACL (meaning
system access control list) is a list
that controls how the system
audits (logs) attempts to access
the object. We won’t use it.

The other control list, discretion-
ary access control list (DACL) is the
one we have to create. It identifies
the users and groups allowed or

denied access to the object. DACL
and SACL have both the same
structure, they contain a list of
ACEs: access control entries.

ACE is a basic security element
and specifies a set of access rights,
together with a trustee for whom
the rights are allowed, denied, or
audited. A trustee can be a user
account, a group account (eg
Everyone), or a logon session. A
trustee is identified by a unique
string, a security identifier (SID).

Definitions, definitions. Let’s see
how all this is used in action. When
a thread tries to access an object,
the system (that is, the kernel)
looks at the DACL. If the object
doesn’t have a DACL, the system
grants or denies access based on
other information (logon session,
for example). Otherwise, the
system looks for ACEs in the
object’s DACL that apply to the
thread. The system compares the
trustee in each ACE to the trustees

A Little Security Dictionary
Absolute Security Descriptor
A security descriptor structure that contains pointers to the security
information associated with an object.

Access Control Entry (ACE)
An entry in an access control list (ACL). An ACE contains a set of
access rights and a security identifier (SID) that identifies a trustee
for whom the rights are allowed, denied, or audited.

Access Control List (ACL)
A list of security protections that applies to an object. (An object
can be a file, process, event, or anything else having a security
descriptor.) An entry in an access control list (ACL) is an access
control entry (ACE). There are two types of access control list,
discretionary and system.

Access Token
An access token contains the security information for a logon
session. The system creates an access token when a user logs on,
and every process executed on behalf of the user has a copy of the
token. The token identifies the user, the user’s groups, and the
user’s privileges. The system uses the token to control access to
securable objects and to control the ability of the user to perform
various system-related operations on the local computer. There are
two kinds of access token, primary and impersonation.

Discretionary Access Control List (DACL)
An access control list that is controlled by the owner of an object
and that specifies the access particular users or groups can have to
the object.

Locally Unique Identifier (LUID)
A 64-bit value guaranteed to be unique on the operating system
that generated it (until the system is restarted).

Logon Identifier
An LUID that identifies a logon session. A logon ID is valid until
the user logs off. A logon ID is unique while the computer is
running; no other logon session will have the same logon ID.
However, the set of possible logon IDs is reset when the computer
starts up.

Logon Session
A logon session begins whenever a user logs on to a computer.
All processes in a logon session have the same primary access
token. The access token contains information about the secu-
rity context of the logon session, including the user’s SID, the
logon identifier, and the logon SID.

Logon SID
A security identifier (SID) that identifies a logon session. You
can use the logon SID in a DACL to control access during a
logon session. A logon SID is valid until the user logs off. A
logon SID is unique while the computer is running; no other
logon session will have the same logon SID. However, the set
of possible logon SIDs is reset when the computer starts up.

Security Descriptor
A structure and associated data that contains the security
information for a securable object. A security descriptor iden-
tifies the object’s owner and primary group. It can also contain
a DACL that controls access to the object, and a SACL that con-
trols the logging of attempts to access the object.

Security Identifier (SID)
A structure of variable length that uniquely identifies a user or
group on all Windows NT implementations.

Self-Relative Security Descriptor
A security descriptor that stores all its security information in a
contiguous block of memory.

System Access Control List (SACL)
An ACL that controls the generation of audit messages for
attempts to access a securable object. The ability to get or set
an object’s SACL is controlled by a privilege typically held only
by system administrators.

Trustee
In Microsoft Windows NT security, a trustee is the user account,
group account, or logon session to which an access control
entry (ACE) applies. Each ACE in an access control list (ACL)
applies to one trustee.

44 The Delphi Magazine Issue 91

identified in the thread’s access
token.

Why a thread and not a process?
Because a thread may have differ-
ent rights than a process or event
different trustee, if it impersonates
another user. No, I don’t intend to
discuss impersonation in more
detail: that will have to wait for
another occasion.

The system examines each ACE
in sequence until one of the follow-
ing occurs. An ACE may explicitly
deny any of the requested access
rights to one of the trustees listed
in the thread’s access token. In that
case, the request is denied. If that
doesn’t happen, one or more ACEs
may explicitly grant all the
requested rights. In that case, the
request is allowed. If all ACEs have
been checked and there is still at
least one requested access right
that has not been explicitly
allowed, access is denied.

This procedure clearly indicates
that the order of ACEs in the DACL
list is important. If there are ACEs
that explicitly allow given rights
but are preceded by an access-
denying ACE, access will be denied
because the denying ACE will be
found first.

If the DACL field in the object’s
security descriptor is set to nil, a
null DACL is created. A null DACL
grants full access to any user that
requests it: normal security check-
ing is not performed for the object
(except that the null DACL still
doesn’t give a normal application
access to an object created in the
LocalSystem account). A null DACL
should not be confused with an
empty DACL. An empty DACL is a

properly allocated and initialised
DACL containing no ACEs. An
empty DACL denies any access to
the object it is assigned to.

Please Let Me In
Finally, the time has come to show
some code. This time, although it is
not usually my practice, I’ll use the
bottom-up approach. First I’ll show
you the actual DACL-creating code
and then I’ll put it into the larger
context. Somehow, things make
more sense this way, mostly
because the NT security model is
full of small idiosyncrasies that
must be taken into the account
when designing the application.

The code (which is actually a
constructor of a helper class that
I’ll describe later) is shown in List-
ing 1. It creates a DACL that allows
full access for one SID. More details
on how to get this SID will follow.

After checking that our system
supports NT security, the code
creates a copy of the constructor

parameter. The logic behind this is
that the access-allowing ACE in the
DACL won’t contain this parame-
ter but only a pointer to it. As we
will need the DACL later, after the
constructor has finished the work
and the parameter has long gone
to parameter heaven, we must
create a more persistent copy. The
gsaSid variable is part of the
TGpSecurityAttributes class and is
only destroyed in its destructor
with a simple FreeMem. The
GetLengthSid function returns the
size of the SID.

Next, the code must first provide
a place for the DACL, a large
enough memory buffer. To calcu-
late its size, the code (in the line
starting with daclSize :=) adds
together the size of the standard
ACL header (SizeOf(ACL)), the size
of the access-allowing ACE struc-
ture (SizeOf(ACCESS_ALLOWED_ACE))
and the size of the SID. After that,
the memory is allocated. Because
the security descriptor we are
building will only contain a pointer
to the DACL memory, this memory
buffer will only be freed in the class
destructor.

Instead of manipulating this
block of memory directly, Initial-
izeAcl is used. It takes three
parameters: a pointer to the DACL
memory, the size of this memory
block, and a third parameter,
which must be set to the constant
ACL_REVISION. By the way, you
should really read the description
of this function in the help as it
contains the formula for calculat-
ing the DACL size (an example of

constructor TGpSecurityAttributes.AllowAccount(const accountName: string);
var
domain : string;
domainSize: DWORD;
sid : PSID;
sidSize : DWORD;
use : DWORD;

begin
if Win32Platform <> VER_PLATFORM_WIN32_NT then Exit;
// get the SID for the account name
domainSize := 0;
LookupAccountName(nil, PChar(accountName), nil, sidSize, nil, domainSize, use);
sid := AllocMem(sidSize);
try
SetLength(domain, domainSize);
Win32Check(LookupAccountName(nil, PChar(accountName), sid, sidSize,
PChar(domain), domainSize, use));

AllowSID(sid);
finally FreeMem(sid); end;

end; { TGpSecurityAttributes.AllowAccount }

➤ Listing 2: Creating an account-allowing DACL.

constructor TGpSecurityAttributes.AllowSID(sid: PSID);
var
daclSize, sidSize : integer;

begin
if Win32Platform <> VER_PLATFORM_WIN32_NT then Exit;
// copy SID to internal field
sidSize := GetLengthSid(sid);
gsaSid := AllocMem(sidSize);
Move(sid^, gsaSid^, sidSize);
// create a dacl and add the SID, granting full access
daclSize := SizeOf(ACL) + SizeOf(ACCESS_ALLOWED_ACE) + GetLengthSid(gsaSid);
gsaDacl := AllocMem(daclSize);
Win32Check(InitializeAcl(gsaDacl, daclSize, ACL_REVISION));
Win32Check(AddAccessAllowedAce(gsaDacl, ACL_REVISION, GENERIC_ALL, gsaSid));
// create a security descriptor and set the dacl
Win32Check(InitializeSecurityDescriptor(@gsaSecDescr,
SECURITY_DESCRIPTOR_REVISION));

Win32Check(SetSecurityDescriptorDacl(@gsaSecDescr, true, gsaDacl, false));
// initialize a security attribute
FillChar(gsaSecAttr, SizeOf(gsaSecAttr), 0);
gsaSecAttr.nLength := SizeOf(gsaSecAttr);
gsaSecAttr.lpSecurityDescriptor := @gsaSecDescr;
gsaSecAttr.bInheritHandle := false;

end; { TGpSecurityAttributes.AllowSID }

➤ Listing 1: Creating a SID-allowing DACL.

March 2003 The Delphi Magazine 45

which you have seen in the previ-
ous paragraph).

To this DACL, which is currently
initialised but empty (therefore
denying any access to the object),
we must add an access-allowing
ACE. Unsurprisingly, AddAccess-
AllowedAce function does the trick.
It takes four parameters: first a
pointer to the DACL buffer, second
ACL_REVISION, the third specifies
the access rights that are granted
and the last contains the address
of the SID structure to which rights
are granted.

Now we have a DACL, but no
security descriptor. First we have
to initialise it with the Initialize-
SecurityDescriptor function. That
is fairly trivial: we provide it with a
pointer to the security descriptor
and a descriptor revision (which is
always SECURITY_DESCRIPTOR_REVI-
SION). Note that the gsaSecDescr
field is not a pointer but a record
and therefore we have to get its
address with the @ operator.

At last, we can assign the DACL
to this security descriptor with the
SetSecurityDescriptorDacl call.
This takes a pointer to the security
descriptor, a flag specifying that
the DACL is present, a pointer to
the DACL’s memory, and a flag
specifying that we don’t want the
default DACL.

Nearly done: now we only need
to set up a security attribute struc-
ture (TSecurityAttribute). At least
it doesn’t require any weird secu-
rity API calls. The code simply
initializes it to all zeros, sets the
length of the structure and sets the
pointer to the security descriptor.

The last mystery we have to
solve is how to get a SID. Well, it
depends. I’ll show the code to get
an account SID and the code that
retrieves the well-known group
SID, but for all other cases you
should dig into MSDN.

The AllowAccount constructor
(Listing 2) takes an account name,
converts it into the corresponding
SID and calls the AllowSID con-
structor that we already know.
There is only one function we need,
LookupAccountName, but it has to be
called twice. The first call will
return the SID size, so we can allo-
cate the appropriate amount of

memory, and the second call will
return the SID.

LookupAccountName takes seven
parameters. The first can contain
the name of the machine we want
to look up the account on. If it is nil
(it will be in our case) the account
is looked up on the local system.
The second parameter contains
the name of the account we are
interested in. The third parameter
is the pointer to the SID: in the first
call the code sets it to nil, indicat-
ing that it is only interested in the
SID size (which is returned in the
fourth parameter). Between the
calls the SID buffer is allocated and
in the second call the pointer to
this buffer is passed in the third
parameter.

Although we are not interested
in the domain name of this
account, we must still set the
buffer for it aside or the second
call to LookupAccountName will fail.
In the first call the code sets the
domain buffer parameter (parame-
ter number five) to nil and domain
size (the sixth parameter) to 0. The
first call sets the domain size, the
code allocates appropriate buffer
(by calling SetLength) and the
second call returns the domain
name.

The last parameter returns the
type of the account, which we are
not interested in.

That covers the users, but what
about the user groups? Well, if we
know the group name, we can use
the same code (AllowAccount).
That is, however, not advisable if
we want to allow access to a cer-
tain well-known group (for exam-
ple, Everyone), as its name may
be translated in the localised
Windows. The constructor in List-
ing 3, AllowEveryone, allows access

to Everyone in a manner independ-
ent of the locale by building the SID
for Everyone piece by piece. The
code initialises the SID, sets its
Authority field to a well-known
value representing the Everyone
group and then sets its first Sub-
Authority field to another well-
known value representing the
same group. As the internal struc-
ture of a SID is well beyond the
scope of this article I won’t explain
this constructor in more detail. For
other well known group SIDs see
the JwaWinNT unit (part of the Jedi
Win32 API translation). For help on
the SID structure and other specif-
ics, see MSDN.

I should also point out that there
are simpler ways of constructing
security descriptors. If you don’t
need NT 4.0 compatibility, explore
the ConvertStringSecurityDescri-
ptorToSecurityDescriptor func-
tion, which takes a textual repre-
sentation of a security descriptor
and converts it to a real descriptor.
Very cool, very simple (once you
know the input string format), but
not appropriate if you must main-
tain the compatibility with NT 4.0
(as some of us still have to).

This covers all the important
parts of the TGpSecurityAttributes
class (see Listing 4). You have seen
everything except the destructor
(which only deallocates the
memory) and the GetSA getter,
which returns nil on the Windows
9x architecture and an address of
the gsaSecAttr field on the NT
architecture.

To use it in a real application,
follow the pattern in Listing 5. The
code should create the security
attributes class and then use its
SecurityAttributes property
instead of nil when creating a

constructor TGpSecurityAttributes.AllowEveryone;
var
siaWorld: SID_IDENTIFIER_AUTHORITY;
sid : PSID;

begin
if Win32Platform <> VER_PLATFORM_WIN32_NT then Exit;
// get the well-known Everyone SID
siaWorld := SECURITY_WORLD_SID_AUTHORITY;
sid := AllocMem(GetSidLengthRequired(1));
try
Win32Check(InitializeSid(sid, @siaWorld, 1));
PDWORD(GetSidSubAuthority(sid, 0))^ := SECURITY_WORLD_RID;
AllowSID(sid);

finally FreeMem(sid); end;
end; { TGpSecurityAttributes.AllowEveryone }

➤ Listing 3: Creating an Everyone-allowing DACL.

46 The Delphi Magazine Issue 91

securable object (an event in this
case).

To make the code simpler, I have
created wrapper functions that
cover most of the expected usage
(Listing 6): creating events, file
mappings, mutexes and sema-
phores with full access (Allow-
Everyone) or named access (Allow-
Account). In fact, the code in Listing
5 is taken from the CreateEvent_
AllowAccount function.

My initial problem can now be
solved by using CreateMutex_All
owEveryone instead of CreateMutex.

All this code is packed into the
GpSecurity unit (included with this
months code). I have also provided
a fixed GpSync (described in the
first article in the series) and
GpSharedMemory (from the second
article) where all securable objects
are now allocated with the
_AllowEveryone function. That
means that you can use the new
GpSync to synchronise a service
with an application and the new
GpSharedMemory to exchange data
between a service and an app.

PostThreadMessage
If you still remember (after all this
security-related talk), the second
problem I encountered was that I
couldn’t send a message to the ser-
vice. I was trying to accomplish
that with the PostThreadMessage,
but it was failing with the status
ERROR_INVALID_THREAD_ID. Again, I
found the answer in MSDN: ‘Win-
dows 2000/XP: This thread must
either belong to the same desktop
as the calling thread or to a
process with the same locally
unique identifier (LUID). Other-
wise, the function fails and

returns ERROR_INVALID_THREAD_ID.’
In other words, the sender and
receiver must either belong to the
same desktop or to the same logon
session. The latter condition is
never true for services, as every
service has a separate logon ses-
sion. We can satisfy the former
condition by changing the service
into an interactive service. That
change alone makes PostThread-
Message work again.

Sometimes an interactive ser-
vice is not an option and we must
use a PostThreadMessage replace-
ment. My solution was to create a
messaging class that doesn’t use
Windows messages. The general
idea is simple: create a shared
memory buffer to hold messages
and an event which signals that
there are new messages in the
memory buffer.

Listing 7 shows the public part of
the ‘messaging without messages’
classes. TGpMessageQueue is an

abstract base class that defines
four different ways to post a mes-
sage (more on that later) and a
property to hold the message
queue name. In a typical GpSync
manner, all Post methods (and all
the Get and Peek methods we’ll
soon encounter) take a timeout
parameter. If the message queue
can’t be accessed in that amount of
time, the function returns an error.

TGpMessageQueueWriter is a
simple descendant that can only
write to the message queue. It
defines a constructor (taking the
message queue name and the size
of the message queue buffer) and a
function, IsReaderAlive, which
checks if the other part of the mes-
sage queue, the message queue
reader, is running. I should add
that having a live message queue
reader is not a requirement. A
writer can post a message to the
queue even if no reader is alive
(but doing that on a regular basis
would quickly fill up the memory
buffer). There is no limitation on
the number of concurrent writers:
each message queue can have as
many writers as needed.

In contrast to that, there can
only be one reader per queue,
TGpMessageQueueReader. This class
defines two constructors, four
GetMessage methods (correspond-
ing to the four PostMessage
methods in TGpMessageQueue) and

TGpSecurityAttributes = class
private
gsaDacl : PACL;
gsaSecAttr : TSecurityAttributes;
gsaSecDescr: TSecurityDescriptor;
gsaSid : PSID;

protected
function GetSA: LPSECURITY_ATTRIBUTES;

public
constructor AllowAccount(const accountName: string);
constructor AllowEveryone;
constructor AllowSID(sid: PSID);
destructor Destroy; override;
property SecurityAttributes: LPSECURITY_ATTRIBUTES read GetSA;

end; { TGpSecurityAttributes }

➤ Listing 4: Security attributes generator.

var gsa: TGpSecurityAttributes;
begin
gsa := TGpSecurityAttributes.AllowAccount(accountName);
try
Result := CreateEvent(gsa.SecurityAttributes, manualReset,
initialState, PChar(eventName));

finally FreeAndNil(gsa); end;
end;

➤ Listing 5: Using the security
attributes generator.

function CreateEvent_AllowAccount(const accountName: string;
manualReset, initialState: boolean; const eventName: string): THandle;

function CreateEvent_AllowEveryone(manualReset, initialState: boolean;
const eventName: string): THandle;

function CreateFileMapping_AllowAccount(const accountName: string;
hFile: THandle; flProtect, dwMaximumSizeHigh, dwMaximumSizeLow: DWORD;
const fileMappingName: string): THandle;

function CreateFileMapping_AllowEveryone(hFile: THandle; flProtect,
dwMaximumSizeHigh, dwMaximumSizeLow: DWORD;
const fileMappingName: string): THandle;

function CreateMutex_AllowAccount(const accountName: string;
initialOwner: boolean; const mutexName: string): THandle;

function CreateMutex_AllowEveryone(initialOwner: boolean;
const mutexName: string): THandle;

function CreateSemaphore_AllowAccount(const accountName: string;
initialCount, maximumCount: longint; const semaphoreName: string): THandle;

function CreateSemaphore_AllowEveryone(initialCount, maximumCount: longint;
const semaphoreName: string): THandle;

➤ Listing 6: Insecure object creators.

March 2003 The Delphi Magazine 47

four PeekMessage methods. Being a
TGpMessageQueue descendant, the
reader can also post messages
back to its own queue, which can
sometimes prove useful.

Why this abundance of mes-
sages? Well, because I went slightly
over the top during the design
phase. First, I wanted to have a
PostMessage that directly mimics
the existing PostMessage, that is I
wanted to have msg, wParam and
lParam fields. This is useful if you
want to plug TGpMessageQueue into
an existing design, which already
uses Post(Thread)Message to send
messages (as I had to). Next, I
added a ‘light’ version that sends
only a string: very nice if you are
sending string messages with rich
content (like XML), and another
version that sends a message
number and a string. To top all
that, I have added a ‘rule them all’
version that contains all four
parameters (message number,
wParam, lParam and message string)
plus a fifth field specifying which
of the other four parameters are
valid. Of course, each Post variant
is accompanied by a Get variant
(which retrieves the message from
the queue) and a Peek variant
(which retrieves the message con-
tents but leaves the message in the
queue). Internally, the first three
variants are implemented by call-
ing the five-parameter monster.

On the plus side you don’t have
to remember all that. Just choose

the variant that suits your
reqirements and use it.

The reason for two TGpMessage-
QueueReader constructors is more
sound. There are two different
versions covering two different
scenarios. If you use the message
queue in the thread, then you
should use the constructor that
takes an event handle. When a
new message arrives, the message
queue reader (actually its working
thread: see the code in Listing 8)
will set this event. Your thread
should wait on this event (proba-
bly in combination with some
other waitable objects) and when
it is set it should read all waiting
messages.

When using the message queue
reader in an event-driven architec-
ture (for example, in the user inter-
face thread), you should use the
other constructor, which takes a
window handle and a message
number. When a new message
arrives, the reader’s working

thread will post this message to
the specified window handle.

This second approach is used in
the TGpMessageQueueReaderComp, a
component wrapper for the
TGpMessageQueueRead. This compo-
nent creates a hidden window and
instructs the reader to post a spe-
cial message to this window. When
that message is processed by
the window’s message-processing
code, it is remapped to a call to the
component event handler.

To see how the message sending
and receiving can be used in your
program, see the demonstration
program testGpSync, which is,
together with the new GpSecurity
unit and updated GpSync and
GpSharedMemory units, part of this
month’s code download.

Primoz Gabrijelcic is the R&D
Manager of FAB doo in Slovenia.
You can contact him at
gp@fab-online.com

TGpMessageQueue = class
destructor Destroy; override;
function PostMessage(timeout: DWORD; const msgData:
string): TGpMQPostStatus; overload;

function PostMessage(timeout: DWORD; flags:
TGpMQMessageFlags; msg: UINT;
wParam: WPARAM; lParam: LPARAM; const msgData: string):
TGpMQPostStatus; overload;

function PostMessage(timeout: DWORD; msg: UINT;
const msgData: string): TGpMQPostStatus; overload;

function PostMessage(timeout: DWORD; msg: UINT;
wParam: WPARAM; lParam: LPARAM): TGpMQPostStatus;
overload;

property Name: string read mqName;
end; { TGpMessageQueue }
TGpMessageQueueWriter = class(TGpMessageQueue)
constructor Create(messageQueueName: string;
messageQueueSize: cardinal); override;

function IsReaderAlive: boolean;
end; { TGpMessageQueueWriter }
TGpMessageQueueReader = class(TGpMessageQueue)
constructor Create(messageQueueName: string;
messageQueueSize: cardinal;
newMessageEvent: THandle{CreateEvent}); reintroduce;
overload;

constructor Create(messageQueueName: string;

messageQueueSize: cardinal;
newMessageWindowHandle: HWND; newMessageMessage: UINT);
reintroduce; overload;

function GetMessage(timeout: DWORD; var flags:
TGpMQMessageFlags;
var msg: UINT; var wParam: WPARAM; var lParam: LPARAM;
var msgData: string): TGpMQGetStatus; overload;

function GetMessage(timeout: DWORD; var msg: UINT;
var msgData: string): TGpMQGetStatus; overload;

function GetMessage(timeout: DWORD; var msg: UINT;
var wParam: WPARAM; var lParam: LPARAM): TGpMQGetStatus;
overload;

function GetMessage(timeout: DWORD; var msgData: string):
TGpMQGetStatus; overload;

function PeekMessage(timeout: DWORD; var flags:
TGpMQMessageFlags; var msg: UINT; var wParam: WPARAM;
var lParam: LPARAM; var msgData: string):
TGpMQGetStatus; overload;

function PeekMessage(timeout: DWORD; var msg: UINT;
var msgData: string): TGpMQGetStatus; overload;

function PeekMessage(timeout: DWORD; var msg: UINT;
var wParam: WPARAM; var lParam: LPARAM): TGpMQGetStatus;
overload;

function PeekMessage(timeout: DWORD; var msgData: string):
TGpMQGetStatus; overload;

end; { TGpMessageQueueReader }

➤ Listing 7: Message queue
interface. procedure TGpMessageQueueReaderThread.Execute;

var
awaited: DWORD;
handles: array [0..1] of THandle;

begin
handles[0] := mqrtNewMessageEvt;
handles[1] := mqrtTerminateEvt;
while true do begin
awaited := WaitForMultipleObjects(2, @handles, false, INFINITE);
if awaited <> WAIT_OBJECT_0 then
break; //while

if mqrtNotifyEvent <> 0 then begin
SetEvent(mqrtNotifyEvent);

end;
if mqrtNotifyWindowHandle <> 0 then begin
PostMessage(mqrtNotifyWindowHandle, mqrtNotifyMessage,
WPARAM(mqrtParent), 0);

end;
end; //while

end; { TGpMessageQueueReaderThread.Execute }

➤ Listing 8: Message queue reader thread.

