
46 The Delphi Magazine Issue 88

My Data Is Your Data
The second part of a series of articles
on inter-process synchronisation
Primoz Gabrijelcic

There is no multiprocess solu-
tion without data sharing. If

you have to do something useful
and need more than one applica-
tion to do it, you need a way to
share data between those applica-
tions. The standard answers to
data sharing are files, databases,
shared memory and specialised
servers. In this article I will deal
with the shared memory solution
to the problem. We’ll review the
Windows mechanisms that allow
us to share memory between pro-
cesses, and then build a wrapper
around those mechanisms.

This article follows on from A
Synchronisation Toolkit in Issue 86.
If you skipped the first part, don’t
worry: this month’s source con-
tains all the necessary code,
including that from the first article.

There are plenty of ways in
which processes can share and
exchange data in Windows: files,
pipes, mailboxes, sockets, etc.
They are all exposed through the
Win32 API. The most basic of all
these tools is (at least for us
old-timers who grew up on DOS) a
simple piece of memory that two
(or more) processes can access.

A shared memory area is easy to
understand and easy to use. The
only trouble with the shared
memory approach on Windows is
that Win32 is rather lacking in sup-
port for it.

Windows 95 onwards imple-
ments shared memory in a same
way, using memory-mapped files.
Memory- mapping is an interesting
concept that allows us to work
with a file as if it was a part of the
process memory. This allows us to
use standard functions that work
on a memory block and not on a
file. Also, we can skip the loading of
a file into memory buffers, as Win-
dows does that for us.

So how does that help us share
data between processes? Simple:
two (or more) processes can map
the same file. Each change a pro-
cess makes is instantly visible in all
the other processes. This is a
simple consequence of the fact
that all processes actually work
with the same physical memory
block where data from the mapped
file is stored.

This is all well and good, and
suitable for file processing, but
does not really help us develop a

shared memory solution. We cer-
tainly don’t want to create a new
file for each shared memory block.
There is, however, a different way
in which file mapping can be used.
Instead of using a specific file, we
can tell Windows that it should use
the system page file for that pur-
pose. In most cases, the page file
won’t even be used: if there is
enough memory, page file memory
mapping will be kept in the RAM.
The contents of the mapping will
only be stored to disk if there is a
shortage of memory.

A Win32 API Way
A simple demonstration of shared
memory access using only Win-
dows API functions is shown in
Listing 1. Shared memory creation
involves two steps. First, we must
create a file mapping, which is an
abstract object that is of no direct
use to us. To access the data in a
mapped file, we must create a
view. There is a logic behind this
two-part approach. A file can be
larger than 2Gb, and to be able to
access such a huge file on Win-
dows (where an address space for
a program is limited to 2Gb), the
operating system allows us to
create a view that starts at an
arbitrary position in the file.

Let’s analyse the code now. File
mapping is created with a call to
the CreateFileMapping function. Its
first parameter is the handle of
the backing storage, which we will
set to INVALID_HANDLE_VALUE as we
want to use the page file for this
purpose. We can then ignore the

program SharedMemoryTest1;
{$APPTYPE CONSOLE}
uses
SysUtils, Windows;

var
mapping : THandle{CreateFileMapping};
randomContent: integer;
shmContent : integer;
view : pointer{MapViewOfFile};

begin
Randomize;
Writeln('Program will now create a shared memory with ’+
‘name "TDM_SHM_API"...');

try
mapping := CreateFileMapping(INVALID_HANDLE_VALUE, nil,
PAGE_READWRITE, 0, 4, 'TDM_SHM_API');

if mapping = 0 then
RaiseLastWin32Error;

try
view :=
MapViewOfFile(mapping, FILE_MAP_WRITE, 0, 0, 4);

if view = nil then
RaiseLastWin32Error;

try
randomContent := Random(1000);
Writeln('Shared memory contents will be set to ',
randomContent);

integer(view^) := randomContent;

Write('Veryfing ... ');
shmContent := integer(view^);
if shmContent = randomContent then
Writeln(' OK')

else
raise Exception.CreateFmt(
'Error! Shared memory containts value %d ‘+
‘instead of %d', [shmContent, randomContent]);

Writeln('Start another instance of this program ’+
‘to write a new value to the shared memory, ‘+
‘then press Enter.');
Readln;
Writeln('Shared memory now contains',
integer(view^));

finally
if not UnmapViewOfFile(view) then
RaiseLastWin32Error;

end;
finally
if not CloseHandle(mapping) then
RaiseLastWin32Error;

end;
except
on E: Exception do
Writeln(E.Message);

end;
end.

➤ Listing 1: Shared memory access via plain Windows API.

December 2002 The Delphi Magazine 47

security attributes (set to nil) and
set access protection to PAGE_
READWRITE (we will both read and
write). The next two parameters
specify the maximum size of the
file mapping: the first represents
the higher 32 bits and the second is
the lower 32 bits. As we will only
share 4 bytes (an integer) we set
the first parameter to 0 and the
second to 4. The last parameter
specifies the name of this file map-
ping. To be able to access one file
mapping from more than one pro-
cess, we must name it. When two
processes create a file mapping
with the same name, they will
access the same underlying stor-
age and therefore they will be shar-
ing the data, which is exactly what
we want to achieve.

Next, we will create a view of this
mapping with a call to MapViewOf-
File. The first parameter is the
file mapping handle returned from
the CreateFileMapping call. Next,
we must specify the access protec-
tion (which may be more restric-
tive than the access protection
specified in CreateFileMapping).
FILE_MAP_ WRITE will give read and
write access. Finally, we must spec-
ify the starting offset of the view
inside the file mapping and the size
of the view. To access every part of
a potentially huge file, the starting
offset is a 64-bit integer (specified
as two 32-bit parts). The size is an
ordinary 32-bit integer. To access
all 4 bytes of our mapping, we must
specify 0 for the offset and 4 for the
size.

MapViewOfFile returns a pointer
to the mapped memory. We can
manipulate this pointer with
normal memory access methods.
For example, we can de-reference it
and cast it into an integer. That is
exactly how the demo accesses it.

The program will then write a
random number into the shared
memory and wait for the user to
press Enter. At that moment, you
can start another instance of the
program, which will overwrite the
shared memory with another
random number. To verify that,
press Enter in the first instance and
you’ll see the new number.

As you can see, we can make it
work in less than 100 lines of code,
but the solution is not a clean one.
All that mumbo-jumbo with file
mappings and views hides the pur-
pose of the program. Accessing the
data through pointers is not very
safe. Worse, the program in Listing
1 has no access protection. It is
entirely possible that two pro-
grams running at the same time
would overwrite each other’s data.

What we really need is a class
that will simplify our work. In the
first place, it must wrap the Win32
API calls into a more straightfor-
ward interface. It should also add
access protection, simplify access
to the shared memory data and, if
possible, support resizing. All of
this and more is included in
TGpSharedMemory, which I will pres-
ent on the next few pages. But first,

let’s see how the simple program
from the beginning of the article
would look using TGpSharedMemory
(see Listing 2).

The first major change is in the
uses section. The Windows unit is no
longer needed. The next change is
in the shared memory creation:
the new code only creates one
Delphi object. Also included is
access protection: we use
AcquireMemory to gain access to the
shared memory and ReleaseMemory
to release it. You can also see that
an indexed property Long replaces
the pointer wizardry from the first
program. At first glance, TGpShar-
edMemory satisfies our require-
ments. But just to be sure, let’s see
how it is implemented.

A Delphi Way
As you can already guess,
TGpSharedMemory uses the Create-
FileMapping and MapViewOfFile
APIs to do its dirty work. In addi-
tion, it will also use a mutex to
guard a critical part of the shared
memory creation and a Single
Writer Multiple Readers guard to
implement access protection.

The file mapping that we create
in TGpSharedMemory will contain
more than just the application
data. The first 40 bytes will hold a
shared memory header, whose
declaration is shown in Listing 3.
This header contains five impor-
tant parameters that must be the
same for all processes that share

program SharedMemoryTest2;
{$APPTYPE CONSOLE}
uses
SysUtils, GpSharedMemory;

var
randomContent: integer;
sharedMemory : TGpSharedMemory;
shmContent : integer;

begin
Randomize;
Writeln('Program will now create a shared memory with ‘+
‘name "TDM_SHM_API"...');

try
sharedMemory :=
TGpSharedMemory.Create('TDM_SHM_API', 4);

try
if sharedMemory.AcquireMemory(true, 1000) = nil then
raise Exception.Create(
'Failed to access shared memory.');

try
randomContent := Random(1000);
Writeln('Shared memory contents will be set to ',
randomContent);

sharedMemory.Long[0] := randomContent;
Write('Veriyfing ... ');
shmContent := sharedMemory.Long[0];
if shmContent = randomContent then
Writeln(' OK')

else

raise Exception.CreateFmt('Error! Shared memory ‘+
‘contains value %d instead of %d',
[shmContent, randomContent]);

finally
sharedMemory.ReleaseMemory;

end;
Writeln('Start another instance of this program to ‘+
‘write a new value to the shared memory, then ‘+
‘press Enter.');

Readln;
if sharedMemory.AcquireMemory(false, 1000) = nil then
raise Exception.Create(
'Failed to access shared memory.');

try
Writeln('Shared memory now contains ',
sharedMemory.Long[0]);

finally
sharedMemory.ReleaseMemory;

end;
finally
FreeAndNil(sharedMemory);

end;
except
on E: Exception do
Writeln(E.Message);

end;
end.

➤ Listing 2: Shared memory access via TGpSharedMemory class.

48 The Delphi Magazine Issue 88

the shared memory block. Those
five parameters are put between
two guards containing magic value
$7E2D81FEF4E0BC22 (in case you
wonder, this is a pseudo-random
number without any hidden mean-
ing). Guards are used to check for
memory overrun problems.

To enable co-operation between
different versions of TGpShared-
Memory (although that is not an
issue yet), the gsmhVersion field
contains a version of the shared
memory data structures. The cur-
rent size of the shared memory
(excluding the header, only appli-
cation data is accounted for) is
stored in field gsmhSize and the
maximum size is stored in field
gsmhMaxSize. The current number
of allocated bytes for this shared
memory block (see the discussion
in the section Resizing) is stored in
gsmhAllocated.

The last field, gsmhModifiedCount,
starts its life at 0 and is incre-
mented by 1 every time a writer
releases shared memory (even if it
didn’t modify it). That allows read-
ers to quickly decide if they should
re-read shared memory data or not
and is important when the process-
ing of the contents of shared
memory takes a long time (for
example, when a text representa-
tion of an XML document is
stored). TGpSharedMemory stores the
last known value of this counter
internally and, if it differs from the
value stored in the header, the
shared memory was modified. This
can be checked for by reading the
Modified property.

The constructor (see Listing 4)
takes four parameters: the name of
the shared memory (required), the
initial size, the maximum size and a
resource protection flag. The
shared memory will be resizable

(we’ll come back to this) if the
maximum size is non-zero. When
shared memory is not resizable
(the maximum size is zero), the ini-
tial size must be greater than zero.
Finally, you can disable built-in
access protection by setting the
fourth parameter to False. The
constructor verifies the correct-
ness of the parameters, creates a
SWMR guard and a mutex, and
opens the shared memory.

The OpenMemory private method
(Listing 4) is completely wrapped
in the critical section (governed by
the initialisation mutex created in
the constructor). That is because
we must do some non-atomic
tricks to determine whether this
was the first process to access the
shared memory, and to execute
some additional initialisation in
that case.

Next, the code creates the file
mapping. You’ll note that it is
always created with the PAGE_READ-
WRITE protection flag regardless of
how we will access the shared
memory later. The true access pro-
tection will be set in the MapView-
OfFile call. For now, you should
ignore the SEC_RESERVE flag that is
set if the shared memory is
resizable. We will cover that later.

The execution then follows two
different paths. If we are the first
owner (the last error is NO_ERROR),
then we must initialise the con-
tents of the shared memory to zero
and then create the internal
header. If we are not the first owner
(the last error is ERROR_ALREADY_
EXISTS), we map the entire shared
memory and check some parame-
ters. All this initialisation and
checking is done by the MapView
function (see Listing 4). At the end,
the mapped view is unmapped.
The view is mapped only when the
memory is acquired, to prevent an
application from modifying the
shared memory at the wrong time.

Besides being used in the con-
structor, MapView is called from
other parts of the code to map the
view of the file, check the header,
reallocate the memory (if the
shared memory is resizable), etc.
It starts by calculating the total
size to be mapped (the requested
size plus the size of the shared
memory header). Next it maps this
part of the shared memory with
the desired access. If the memory
is to be initialised, the shared
memory header is filled with the
values passed to the constructor.
Otherwise, the header is checked
for consistency (the signature
stored in the guards must be cor-
rect, the version must be 1), the
Size and MaxSize properties are
compared to the header values
and possible errors are reported. If
the shared memory is resizable,
the Size property is updated from
the header and the view is mapped
again with the new size. The last
part (the part that calls
VirtualAlloc) handles the virtual
memory resizing (and will, as you
may have already guessed, be
discussed later).

That pretty much covers the
shared memory creation. The
destruction part is much easier.
The destructor (see Listing 4)
releases the memory if it is cur-
rently acquired (unmapping the
view in progress), closes the file
mapping, destroys the initialising
mutex and the SWMR guard.

Access Protection
Every experienced programmer
can tell you that it is really impor-
tant to synchronise access to
shared resources. It is OK for two
processes to read the same data,
but it is usually a very bad thing to
allow one reader and one writer
(and it is an even worse thing to
allow two simultaneous writers).
To prevent such incidents, we
would traditionally use some sepa-
rate mechanism of access control.
Typically, a mutex is used to wrap
shared memory accesses into a
critical section.

TGpSharedMemory uses a slightly
more sophisticated approach
allowing multiple readers to
access shared memory at the same

TGpSharedMemoryHeader = packed record
gsmhGuard1 : int64; //Always containing CGpSharedMemorySignature.
gsmhVersion : cardinal; //Always 1. Used for possible future modifications

//of the header structure.
gsmhSize : cardinal; //Current size of the shared memory.
gsmhMaxSize : cardinal; //Maximum size of the shared memory.
gsmhAllocated : cardinal; //Size of the allocated memory.
gsmhModifiedCount: int64; //Counter showing how many times shared memory was

// modified.
gsmhGuard2 : int64; //Always containing CGpSharedMemorySignature.

end; { TGpSharedMemoryHeader }

➤ Listing 3: Shared memory
header.

December 2002 The Delphi Magazine 49

time. The synchronisation primi-
tive used, the Single Writer Multi-
ple Readers guard, was presented
in Issue 86. In short, it allows the
shared memory (or any other
shared resource) to be accessed
either by a single writer or by mul-
tiple readers.

To access shared memory, a pro-
gram calls AcquireMemory (Listing
5), with two parameters: the type
of access required (read or write)
and the timeout value (in millisec-
onds, INFINITE is supported). If the
function can grant the required
access in the allotted time, it will
return a raw pointer to the start of
the shared memory block. Other-
wise, it will return nil.

If we skip the error handling,
AcquireMemory first accesses the
internal TGpSWMR object and
requires write or read access. If
that succeeds, it calls the MapView
workhorse (which we have
already described) to map a view
of the shared memory into the
process space.

The process may disable inter-
nal access protection handling by

constructor TGpSharedMemory.Create(objectName: string; size,
maxSize: cardinal; resourceProtection: boolean);

begin
inherited Create;
if objectName = '' then
raise EGpSharedMemory.Create(sNameRequired);

SetName(objectName);
inherited SetSize(size);
if (size = 0) and (maxSize = 0) then
raise EGpSharedMemory.CreateFmt(
sInvalidSharedMemorySize, [Name, Size]);

SetMaxSize(maxSize);
if (maxSize > 0) and (size > maxSize) then
raise EGpSharedMemory.CreateFmt(
sSizeMustBeSmallerThanMaxSize, [Name, size, maxSize]);

if resourceProtection then
gsmSynchronizer := TGpSWMR.Create(Name+'$SWMR');

gsmInitializer := CreateMutex(nil, false,
PChar(Name+'$MTX'));

if gsmInitializer = 0 then
RaiseLastWin32Error;

SetCreated(OpenMemory);
end; { TGpSharedMemory.Create }
function TGpSharedMemory.OpenMemory: boolean;
var
fPtr : pointer;
protectionFlags: DWORD;

begin
Result := false; // to keep Delphi happy
if WaitForSingleObject(gsmInitializer,
CInitializationTimeout*1000) <> WAIT_OBJECT_0 then
raise EGpSharedMemory.CreateFmt(sInitializationTimeout,
[Name, SysErrorMessage(GetLastError)])

else begin
try
protectionFlags := PAGE_READWRITE;
if IsResizable then
protectionFlags := protectionFlags OR SEC_RESERVE;

gsmFileMapping := CreateFileMapping(
INVALID_HANDLE_VALUE, nil, protectionFlags, 0,
SizeOf(TGpSharedMemoryHeader)+GetUpperSize,
PChar(Name));

if gsmFileMapping = 0 then
RaiseLastWin32Error

else begin
if GetLastError = NO_ERROR then begin
// first owner, initialize to 0 and write header
fPtr := MapView(gsmFileMapping, FILE_MAP_WRITE,
Size, false, true);

UnmapView(fPtr);
Result := true;

end else if GetLastError = ERROR_ALREADY_EXISTS
then begin
// not first owner, check size if not resizable
fPtr := MapView(gsmFileMapping, FILE_MAP_READ);
UnmapView(fPtr);
Result := false;

end elee
// not (GetLastError in
// [NO_ERROR,ERROR_ALREADY_EXISTS])
RaiseLastWin32Error;

end; //else gsmFileMapping = 0
finally
ReleaseMutex(gsmInitializer);

end;
end; //else WaitForSingleObject()

end; { TGpSharedMemory.OpenMemory }
function TGpSharedMemory.MapView(mappingObject: THandle;
desiredAccess: DWORD; mappingSize: DWORD; getFromHeader:
boolean; initialize: boolean): pointer;

var
allocSize: DWORD;
header : PGpSharedMemoryHeader;
totalSize: cardinal;

begin
if initialize and getFromHeader then
raise Exception.Create('GpSharedMemory: Internal ‘+
‘error. Initialize and getFromHeader are both True ‘+
‘in MapView.'); //DNT

totalSize := mappingSize + SizeOf(TGpSharedMemoryHeader);
Result := MapViewOfFile(mappingObject, desiredAccess, 0,
0, totalSize);

if not assigned(Result) then
RaiseLastWin32Error;

header := PGpSharedMemoryHeader(Result);
if initialize then begin
if not IsResizable then
allocSize := 0

else begin
allocSize := totalSize;
if VirtualAlloc(header, allocSize, MEM_COMMIT,
PAGE_READWRITE) = nil then
RaiseLastWin32Error;

end;
header^.gsmhGuard1 := CGpSharedMemorySignature;
header^.gsmhVersion := 1;
header^.gsmhSize := mappingSize;
header^.gsmhMaxSize := MaxSize;
header^.gsmhAllocated := RoundToNextPage(allocSize);
header^.gsmhGuard2 := CGpSharedMemorySignature;

end else begin
if (header^.gsmhGuard1 <> CGpSharedMemorySignature) or

(header^.gsmhGuard2 <> CGpSharedMemorySignature) then
raise EGpSharedMemory.CreateFmt(sMemoryBlockCorrupted,
[Name])

else if header^.gsmhVersion <> 1 then
raise EGpSharedMemory.CreateFmt(sInvalidHeaderVersion,
[Name, header^.gsmhVersion]);

if not getFromHeader then
header^.gsmhSize := mappingSize

else begin
if header^.gsmhMaxSize <> MaxSize then
raise EGpSharedMemory.CreateFmt(
sSMAlreadyExistsMaxSizeDiffers, [Name,
header^.gsmhMaxSize, MaxSize])

else if (MaxSize = 0) and (header^.gsmhSize <> Size)
then
raise EGpSharedMemory.CreateFmt(
sSMAlreadyExistsSizeDiffers, [Name,
header^.gsmhSize, Size]);

inherited SetSize(header^.gsmhSize);
inherited SetMaxSize(header^.gsmhMaxSize);
if mappingSize <> Size then begin
UnmapView(Result);
mappingSize := Size;
totalSize := mappingSize +
SizeOf(TGpSharedMemoryHeader);

Result := MapViewOfFile(mappingObject,
desiredAccess, 0, 0, totalSize);

if not assigned(Result) then
RaiseLastWin32Error;

header := PGpSharedMemoryHeader(Result);
end;

end;
end;
if IsResizable then begin
if totalSize > header^.gsmhAllocated then begin
if VirtualAlloc(Ofs(header, header^.gsmhAllocated),

totalSize - header^.gsmhAllocated,
MEM_COMMIT, PAGE_READWRITE) = nil then

RaiseLastWin32Error;
header^.gsmhAllocated := RoundToNextPage(totalSize);

end;
end;
SetDataPointer(Ofs(Result,
SizeOf(TGpSharedMemoryHeader)));

end; { TGpSharedMemory.MapView }
destructor TGpSharedMemory.Destroy;
begin
if Acquired then
ReleaseMemory;

if gsmFileMapping <> 0 then begin
CloseHandle(gsmFileMapping);
gsmFileMapping := 0;

end;
if gsmInitializer <> 0 then begin
CloseHandle(gsmInitializer);
gsmInitializer := 0;

end;
FreeAndNil(gsmSynchronizer);
inherited;

end; { TGpSharedMemory.Destroy }

➤ Listing 4: Shared memory
creation and destruction.

50 The Delphi Magazine Issue 88

specifying resourceProtection :=
false in the TGpSharedMemory con-
structor. In that case, the internal
TGpSWMR object is not allocated at
all. Nevertheless, the program
must still call AcquireMemory to
access the shared memory.

When a program doesn’t need
shared memory any more, it must
release its hold on it by calling the
ReleaseMemory method (see Listing
5). This first updates the memory
contents if the stream interface is
used (we’ll discuss this in the sec-
tion Stream Interface), updates the
modification counter, unmaps
the view and releases the internal
TGpSWMR object (if access
protection is active).

If your code takes a long time to
read the data in shared memory,
you may be concerned that read-
ing will block out writers for too
long. In that case, you can create a
read-only snapshot of the shared
memory contents, release the
memory, and continue to work on
the snapshot.

The interesting thing about the
snapshot object TGpSharedSnapshot
(created with the function Make-
Snapshot) is that it implements
almost the same interface as
TGpSharedMemory. In fact, both
classes are descendants of TGpBa-
seSharedMemory, which defines this
interface. With some precautions,
you can easily write code that

doesn’t care if it is working with
real shared memory or a shared
snapshot.

Text Access
You already know that TGpShared-
Memory allows access to a shared
memory block through a raw
pointer returned from the
AcquireMemory function. That is not
all the class has to offer, though.

The easiest way to access the
shared memory is with the
AsString property. It allows you to
treat the shared memory as a
string. The first four bytes of the
shared memory contain the length
of the string and the rest contains
the string itself.

The getter (GetAsString) and
setter (SetAsString) for this prop-
erty are fairly trivial (see Listing 6).
The getter allocates a string of the
required length and moves the

data from the shared memory into
the string, while the setter resizes
the shared memory to fit the string
(if the shared memory is resizable)
and stores the string length and
contents into it. Both methods use
the Long property to access the
first 4 bytes of the shared memory.
We met it in the second example
(see Listing 2) but then we silently
ignored it. The time has finally
come: meet Long and its friends,
the indexed accessors.

Indexed Access
TGpSharedMemory implements four
properties that allow you to treat
the shared memory as an array of
numbers. ByteIdx ‘sees’ the shared
memory as a sequence of bytes,
WordIdx thinks that the shared

function TGpSharedMemory.AcquireMemory(forWriting: boolean;
timeout: DWORD): pointer;

var
gotAccess: boolean;

begin
if gsmFileMapping = 0 then
raise EGpSharedMemory.CreateFmt(
sTryingToAcquireNoninitialized, [Name])

else begin
if Acquired then
raise EGpSharedMemory.CreateFmt(sMissingReleaseMemory,
[Name]);

if not assigned(gsmSynchronizer) then
gotAccess := true

else if forWriting then
gotAccess := gsmSynchronizer.WaitToWrite(timeout)

else
gotAccess := gsmSynchronizer.WaitToRead(timeout);

if not gotAccess then
Result := nil

else begin
SetIsWriting(forWriting);
if forWriting then
gsmDesiredAccess := FILE_MAP_WRITE

else
gsmDesiredAccess := FILE_MAP_READ;

grmFileView := MapView(gsmFileMapping,
gsmDesiredAccess);

Result := DataPointer;
if not assigned(Result) then

RaiseLastWin32Error;
end;

end;
end; { TGpSharedMemory.AcquireMemory }
procedure TGpSharedMemory.ReleaseMemory;
begin
if not Acquired then
raise EGpSharedMemory.CreateFmt(sNotAcquired, [Name])

else begin
if IsWriting and HaveStream then begin
ResizeMemory(CopyStream.Size);
CopyStream.Position := 0;
CopyStream.Read(DataPointer^,Size);
FreeStream;

end;
if IsWriting then
Inc(PGpSharedMemoryHeader(
grmFileView)^.gsmhModifiedCount);

gsmModifiedCount := PGpSharedMemoryHeader(
grmFileView)^.gsmhModifiedCount;

try
UnmapView(grmFileView);

finally
if assigned(gsmSynchronizer) then
gsmSynchronizer.Done;

end;
end;
inherited;

end; { TGpSharedMemory.ReleaseMemory }

➤ Listing 5: Acquiring and
releasing shared memory. function TGpBaseSharedMemory.GetAsString: string;

begin
if not Acquired then
raise EGpSharedMemory.CreateFmt(sNotAcquired, [Name]);

if Size < 4 then
raise EGpSharedMemory.CreateFmt(sNotAString, [Name]);

SetLength(Result, Long[0]);
if Length(Result) > 0 then
Move(Ofs(DataPointer, 4)^, Result[1], Length(Result));

end; { TGpBaseSharedMemory.GetAsString }
procedure TGpBaseSharedMemory.SetAsString(const Value: string);
begin
if not Acquired then
raise EGpSharedMemory.CreateFmt(sNotAcquired, [Name]);

if not IsWriting then
raise EGpSharedMemory.CreateFmt(sNotAcquiredForWriting, [Name]);

if cardinal(Length(Value)+4) > GetUpperSize then
raise EGpSharedMemory.CreateFmt(sStringIsTooLong, [Name, GetUpperSize]);

if IsResizable then
ResizeMemory(Length(Value)+4);

Long[0] := Length(Value);
if Length(Value) > 0 then
Move(Value[1], Ofs(DataPointer,4)^, Length(Value));

end; { TGpBaseSharedMemory.SetAsString }

➤ Listing 6: Treating shared
memory as a string.

December 2002 The Delphi Magazine 51

memory is filled with two-byte
words, LongIdx accesses four-byte
integers, and HugeIdx works with
eight-byte numbers.

All the properties are indexed by
a number and all start counting
from zero. That is, ByteIdx[0]
returns the first byte of the shared
memory, WordIdx[0] returns the
first two bytes, and so on.

There is no heavy magic behind
these properties. They all have
pretty dull getters and setters, that
essentially call the methods
GetData and SetData, shown in List-
ing 7 together with accessors for
the property WordIdx.

Everything should be pretty
obvious except for two previously
unmentioned functions. CheckDMA
makes sure that the stream inter-
face (see next section) is not
active, and CheckBoundaries veri-
fies that the data required is com-
pletely inside the shared memory
area.

If your shared memory layout is
not that regular, you can maybe
use four similar properties: Byte,
Word, Long, Huge. Like their -Idx
counterparts they access one- to
eight-byte numbers. The differ-
ence lies in the index. These prop-
erties treat the shared memory as a
formless memory blob and the
index represents the offset of the
data inside this blob. In other
words, Byte[0] returns the first
byte of the shared memory,
Word[1] returns the word repre-
sented by bytes 1 and 2 (compare
this to WordIdx[1], which returns
second word, that is bytes 2 and 3),
Long[2] returns the integer repre-
sented by bytes 2 to 5, and so on.

If that is still not formless enough
for your taste, you obviously won’t
mind accessing shared memory as
a stream. As you may have
guessed, TGpSharedMemory has a
stream interface built in.

Stream Interface
Sometimes it is useful to treat
shared memory as a stream that
can be passed to an existing piece
of code. For example, it is quite
simple to store an XML document
in the shared memory in this way.
The stream interface is most pow-
erful when it is used with resizable
shared memory, but you can use it
with fixed-size shared memory too.

When you retrieve the stream
interface to the shared memory
through the property AsStream, the
shared memory behavior changes.
Text access stops working, and so
does indexed access. Access
through the raw pointer (the
DataPointer property) is still avail-
able, but is not really recom-
mended, as data stored in the
shared memory block may not be
in sync with the streamed version.

The stream interface getter
(GetAsStream, see Listing 8) creates
an instance of the TGpSharedStream
class if one does not already exist.
Every instance of TGpSharedMemory
has at most one instance of
TGpSharedStream associated with it.
That instance (we’ll call it the
shared stream) remaps TStream-
type access (Read, Write, Seek...)
into relevant shared memory calls.

When writing into the shared
stream, a few different scenarios

can occur. The most simple ver-
sion is that the data being written
fits into the shared memory. In that
case, it is copied into the right
place (using raw pointer access). If
there is not enough space for all
the data and the shared memory is
not resizable, as much data as pos-
sible is stored. The Write function
returns the number of bytes writ-
ten (see Listing 9).

Interesting things start to
happen if the shared memory is
resizable. In that case, the internal
TMemoryStream instance is created
and all the data from the shared
memory is copied into it. All the
subsequent operations on shared
stream work on that copy. Only
when the shared memory is
released (see ReleaseMemory in List-
ing 5: the block starting with if
IsWriting and HaveStream), it is
resized to accommodate the new
data and the content of the stream
is copied back into the shared
memory.

Reading from the stream (see
Listing 9) is simpler than writing. If
the internal TMemoryStream is cre-
ated, the data will be taken from it,
otherwise the data from the
shared memory will be used.

Resizing
So far, we have achieved all our
objectives except resizing, and
that’s the tough one. Windows
doesn’t really offer much help in
that direction. The size of a shared

function TGpBaseSharedMemory.GetWordIdx(idx: integer): word;
begin
CheckDMA;
GetData(idx*SizeOf(Result), SizeOf(Result), Result);

end; { TGpBaseSharedMemory.GetWordIdx }
procedure TGpBaseSharedMemory.SetWordIdx(idx: integer; Value: word);
begin
CheckDMA;
SetData(idx*SizeOf(Value), SizeOf(Value), Value);

end; { TGpBaseSharedMemory.SetWordIdx }
procedure TGpSharedMemory.GetData(offset, size: cardinal; out buffer);
begin
if not Acquired then
raise EGpSharedMemory.CreateFmt(sNotAcquired, [Name]);

CheckBoundaries(offset, size);
Move(Ofs(DataPointer,offset)^, buffer, size);

end; { TGpSharedMemory.GetData }
procedure TGpSharedMemory.SetData(offset, size: cardinal; var buffer);
begin
if not Acquired then
raise EGpSharedMemory.CreateFmt(sNotAcquired, [Name]);

if not IsWriting then
raise EGpSharedMemory.CreateFmt(sNotAcquiredForWriting, [Name]);

CheckBoundaries(offset, size);
Move(buffer, Ofs(DataPointer,offset)^, size);

end; { TGpSharedMemory.SetData }

➤ Listing 7: Indexed access to the
shared memory.

function TGpBaseSharedMemory.GetAsStream: TGpSharedStream;
begin
if not Acquired then
raise EGpSharedMemory.CreateFmt(sNotAcquired, [Name]);

if not HaveStream then
gbsmStream := TGpSharedStream.Create(Self);

Result := gbsmStream;
end; { TGpBaseSharedMemory.GetAsStream }

➤ Listing 8: Retrieving the
stream interface.

52 The Delphi Magazine Issue 88

memory block must be known
when it is created and it cannot be
resized after that.

The only thing we can do is to
conserve the memory. We can
create a shared memory block with
a very large size that doesn’t use
any memory. Later, we can allocate
just the memory that we need. This
is possible because memory allo-
cation in Windows is a two-stage
process. In the first stage, the oper-
ating system reserves a part of a
process’s virtual address space
without allocating any physical
storage (the process is called
reserving). In the second stage, the
OS allocates physical memory to
back that virtual address space
(committing). Usually, both stages
happen inside one memory alloca-
tion call, but we are free to request
only the first or only the second
stage (for more information, see
the Help on the VirtuallAlloc API
function).

This trick is complicated for two
reasons. On the NT platform, file
mapping memory can only grow. It
is possible to allocate physical
memory to match the pre-allo-
cated virtual memory but it is
impossible to release it. Memory
use of the resizable shared
memory can therefore only grow
(until all processes release the
shared memory and the OS
destroys it, of course). It is possi-
ble to shrink physical memory
associated with the file mapping on
Windows 9x, but for the sake of

simplicity I have decided to ignore
that fact. That is why MapView,
which implements physical mem-
ory allocation, only calls Virtual-
Alloc and never calls VirtualFree.

The other problem appears on
the Windows 9x platform. Here, the
OS wants to reserve enough space
in the page file for all the memory
we might want to use. If you create
a shared memory block with a very
large maximum size, you will most
probably run out of space in your
page file, or your disk space,
whichever comes first. There is no
good solution for this problem.
Either design your shared memory
use with great care, or focus on the
NT platform.

The last thing you may want to
know is that all this only works
with file mappings backed by the
page file. You can’t do that trick if
CreateFileMapping is working on a
real file. But, as we have designed
shared memory to work with page
file, this isn’t really an issue.

Given all that, the resizable sup-
port is just a matter of correct
implementation. The first part,
reserving, is done in the OpenMemory
method (see Listing 4) where
SEC_RESERVE flag is used in the call
to CreateFileMapping. This affects
the MapView method (also shown in
Listing 4) where MapViewOfFile is
called. When SEC_RESERVE is set,
MapViewOfFile returns a pointer as
usual, but at that time the pointer
is not pointing to the physical
memory. It is pointing to virtual

memory that is not backed by the
physical memory. To allocate the
required physical memory we
must call VirtualAlloc with the
MEM_COMMIT flag. When our data
grows, more physical memory
may be required and VirtualAlloc
must be called again. All that is
complicated by the fact that
VirtualAlloc commits memory in
chunks: the size that we pass to it
will be rounded up to the next page
boundary. On the Intel architec-
ture, and that is the only one that
interests us, a page size is 4Kb,
meaning that every memory allo-
cation is always rounded up to the
next 4Kb. All that trickery is han-
dled (hopefully in a correct
manner) in the MapView method.

Component Wrapper
Well, this is it: a shared memory
class in all its details. This month’s
source, however, hides some
other treasures. There is, for exam-
ple, a GpSharedMemoryComp unit con-
taining a component wrapper for
the TGpSharedMemory class.

The shared memory wrapper
TGpSharedMemoryComp exposes most
of the shared memory functional-
ity through a number of public
and published properties (see
Listing 10).

To activate the shared memory,
you have to set its name (using the
property SharedMemoryName), size
(use InitialSize for fixed-size
memory or MaxSize for resizable
memory), and flip the Active prop-
erty to True. That will create an
internal TGpSharedMemory instance

procedure TGpSharedStream.CopyOnWrite;
var memSize: cardinal;
begin
//Must get shared memory size before stream is created,
//because after that TGpResizableSharedMemory returns
//stream size as its size.
memSize := Memory.Size;
ssCopyStream := TMemoryStream.Create;
CopyStream.Write(Memory.DataPointer^, memSize);
CopyStream.Position := MemoryPos;

end; { TGpSharedStream.CopyOnWrite }
function TGpSharedStream.Read(var buffer; count: integer):
longint;

var
remaining: integer;

begin
if UseStream then
Result := CopyStream.Read(buffer, count)

else if MemoryPos < Memory.Size then begin
remaining := Memory.Size-MemoryPos;
if remaining > count then
remaining := count;

Move(CurrentData^, buffer, remaining);
MemoryPos := MemoryPos + cardinal(remaining);
Result := remaining;

end else
Result := 0;

end; { TGpSharedStream.Read }
function TGpSharedStream.Write(const buffer; count:
integer): longint;

var remaining: integer;
begin
if not Memory.IsWriting then
raise EGpSharedMemory.CreateFmt(sNotAcquiredForWriting,
[Memory.Name]);

ssModified := true;
if UseStream then
Result := CopyStream.Write(buffer, count)

else begin
remaining := Memory.Size-MemoryPos-1;
if remaining > count then
remaining := count;

if (remaining < count) and Memory.SupportsResize then
begin
CopyOnWrite;
Result := Write(buffer, count);

end else begin
Move(buffer, CurrentData^, remaining);
SetMemoryPos(int64(MemoryPos) + int64(remaining));
Result := remaining;

end;
end;

end; { TGpSharedStream.Write }

➤ Listing 9: Reading and writing a shared memory stream.

December 2002 The Delphi Magazine 53

(and setting Active to False will
destroy it).

The AcquireMemory and Release-
Memory methods are replaced with
the Access property, which has
three possible states: accNone,
accRead and accWrite. Setting it to

the accNone state releases memory,
while using any of the other two
states calls AcquireMemory with the
timeout equal to the value of the
Timeout property. If the required
state cannot be acquired, Access
will revert to accNone. When

TGpSharedMemoryComp = class(TComponent)
public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;
function AcquireMemory(forWriting: boolean; timeout: DWORD): pointer;
procedure ReleaseMemory;
property AsStream: TGpSharedStream read GetAsStream;
property Byte[byteOffset: integer]: byte read GetByte write SetByte;
property ByteIdx[idx: integer]: byte read GetByteIdx write SetByteIdx;
property DataPointer: pointer read GetDataPointer;
property Huge[byteOffset: integer]: int64 read GetHuge write SetHuge;
property HugeIdx[idx: integer]: int64 read GetHugeIdx write SetHugeIdx;
property Long[byteOffset: integer]: longword read GetLong write SetLong;
property LongIdx[idx: integer]: longword read GetLongIdx write SetLongIdx;
property Word[byteOffset: integer]: word read GetWord write SetWord;
property WordIdx[idx: integer]: word read GetWordIdx write SetWordIdx;

published
property Access: TGpSharedMemoryAccess read FAccess write SetAccess;
property Acquired: boolean read GetAcquired write IgnoreSetAcquired;
property AsString: string read GetAsString write SetAsString;
property InitialSize: cardinal read FInitialSize write SetInitialSize;
property IsResizable: boolean read GetIsResizable write IgnoreSetIsResizable;
property MaxSize: cardinal read FMaxSize write SetMaxSize;
property Modified: boolean read GetModified write IgnoreSetModified;
property SharedMemoryName: string read FSharedMemoryName write

SetSharedMemoryName;
property Size: cardinal read GetSize write SetSize;
property Timeout: DWORD read FTimeout write FTimeout;
property WasCreated: boolean read GetWasCreated write IgnoreSetWasCreated;
property Active: boolean read FActive write SetActive;

end; { TGpSharedMemoryComp }

➤ Listing 10: TGpSharedMemory component wrapper.

memory is required, the read-only
property Acquired becomes True.

To modify the shared memory
use the published property
AsString, which gives access to the
text interface, the public property
AsStream, or the public index
accessors (Byte, ByteIdx, etc).

The job on the shared memory
class is done and we can focus on
bigger issues. Next time, we’ll dis-
cuss how to use shared memory in
client-server solution containing
multiple data producers and one
data processor. Believe me, it is
not as trivial as it may seem.

Primoz Gabrijelcic is the R&D
Manager of FAB d.o.o. in
Slovenia. You can contact him at
gp@fab-online.com

All code in this article is freeware
and may be freely reused in your
own applications.

