File Sharing On Linux

by Primoz Gabrijelcic

his started as a simple sequel

to my article on using the file
system for interprocess synchroni-
sation (Let’s Cooperate, in Issue
68). I planned to take my suppos-
edly well-written and cross-
platform-ready code, port it to
Kylix, and write a short article
about the (again supposedly)
simple task. Yeah, sure, you proba-
bly all know how such well-
thought-out plans end. I've now
been wrestling with Linux and file
synchronisation (not with Kylix,
since that is anice quiet animal) for
more than two months and I still
don’t think that I know half the
tricks there are. But at least | have
managed to achieve my goal: [can
present you the code that synchro-
nises processes on both Windows
and Linux platforms using only the
file system.

What Works On Windowvs...

To better understand the prob-
lems of porting the synchronisa-
tion code to Linux, let’s first take a
short tour of the above-mentioned
article. First a short note for new-
comers: that article presented a
family of process-synchronisation
primitives, all based on the file
system. There was an inter-pro-
cess (and inter-computer) mutex
that used one shared file to accom-
plish the task, a critical section, a
group (or pool), and even more
complicated synchronisation and
communication classes. (If you
want to learn more, read the arti-
cle)

The main topic of this article is
the simplest synchronisation prim-
itive: a mutex. On Windows, imple-
mentation of a mutex is simple. I
represented it with a single file.
The process opened that file with
exclusive access to acquire the
mutex. To release the mutex, the
process closed the file.

That approach works well with
misbehaving applications and
hardware. If the process termi-
nates without releasing the mutex

50

(closing the file), the operating
system will do it instead. If things
go from bad to worse and the com-
puter running that process crashes
(while the process has ownership
of the mutex), the file server will
notice that (sooner or later) and
will release the file so that it can be
acquired by another program.

....May Not Work On Linux

So what is wrong with Linux? Well,
nothing, actually. The problem is
more of a philosophical nature. In
the Windows world we are used to
file locking. It is something natural,
something that permeates the
operating system, something that
we had to learn when we stopped
using DOS. But for all practical pur-
poses, Linux is Unix, and Unix was
designed with different things in
mind, one of which was openness
and sharing. From the very old
days, Unix has supported different
kinds of file systems, including
those that span a network. Remem-
ber, that was well before Windows,
and file locking was something that
was simply too expensive (in terms
of time and network traffic) to be
implemented. And that is why there
is no locking on Linux.

Take this with a grain of salt: I'm
telling the truth, but not the com-
plete truth. There is locking on
Linux (and Unix), but it is not man-
datory (as on Windows) but advi-
sory. In other words, on Windows
you can forbid other files to access
the file you are working on; on
Linux you can only notify
well-behaved programs that you
are working on the file and can they
please come back later.

Even that is not completely true:
there is mandatory locking on Unix
(and Linux), it is just not wide-
spread. More on that later.

When I found that horrifying rev-
elation, I was stunned (maybe you
already noticed that 'm an old Win-
dows geezer, not a Linux guru?). |
just had to find out how they do it
on the other side of the fence. After

The Delphi Magazine

much (and I mean much) surfing,
during which I found lots of inter-
esting links (all neatly collected in
the sidebar), the picture became
clearer.

Most Linux applications use the
trivial approach: lock files. If the
file exists, the resource is locked
(the mutex is acquired). If the file
doesn’t exist, the resource is free.
If the process crashed before it
could release the file, the resource
is locked and the situation is called
afeature. Really. To quote a beauti-
ful Secure Programming for Linux
and Unix HOWTO (section Avoid
Race Conditions): ‘On Unix-like sys-
tems resource locking has tradi-
tionally been done by creating a
file to indicate a lock, because this
is very portable. It also makes it
easy to “fix” stuck locks, because
an administrator can just look at
the file system to see what locks
have been set. Stuck locks can
occur because the program failed
to clean up after itself (eg, it
crashed or malfunctioned) or
because the whole system
crashed. Note that these are “advi-
sory” (not “mandatory”) locks; all
processes needing the resource
must cooperate to use these
locks.’

OK, I can buy the portability argu-
ment but all that easy to fix part
just describes a way of fixing the
broken system. I for sure wouldn’t
expect users of my program to
delete the stuck locks when the
program crashes. Would you?

Another problem with this
approach is that it may not always
work. Remember, Linux supports
plenty of file systems and some of
them are not local but networked
(thefiles are on another computer,
not on the one we are working on).
On Windows, this situation is typi-
cally hidden from us as Windows
tries hard to represent the net-
work file system as if it were local.
On Linux, this may not be the case.
For example, the most common
network file system, NFS, doesn’t

Issue 84

completely support normal file
open/create semantics in version
2. (Translation: when using NFS 2,
open and create may behave differ-
ently to the open and create on the
local file system). Because of that,
using lock files for synchronisation
may get you into a race condition.
There are solutions for that, too
(the best is to use NFS version 3
instead of version 2), but it also
shows how much one file system
may differ from another on Unix.

A File Is A Mutex

Let’s first try to implement the
simple approach from Windows: a
lock file that signals the acquired
state of the mutex with its own
presence. This may seem trivial
at first: to acquire the mutex,
we will Assign a file and «call
Rewrite; to release it, we will Close
and delete the file. Alas, this will
not work. Rewrite allows a process
to overwrite a file owned by
another process and that breaks
our scheme.

The reason lies deep inside the
System unit in the OpenFile func-
tion. It uses a function from the
system library, 1ibc.open, to open

0 Listing 2: Acquiring a
file-based mutex.

program testrewrite;

{$APPTYPE CONSOLE}

var
f: file;

begin
Assign(f,'rewrite-test');
WriteIn('Will rewrite file...');
Rewrite(f);
WriteIn('...rewritten');

WriteIn('Press Enter to close the file');

Readln;
Close(f);
end.

0 Listing 1: Simultaneous write access testing.

files. This is fine, but the combina-
tion of flags sent to the open from
Rewrite is not fine, at least for our
purposes. Kylix sets the rewrite
flags to 0_CREAT or O_TRUNC or
0_RDWR, which in translation means:
create the file if it doesn’t exist,
truncate the file if it does exist, and
open it for reading and writing.
Because there is no locking, Linux
allows you to do that from more
than one process at the same time,
and that’s why two processes can
simultaneously Rewrite the lock
file both thinking that they own the
mutex. Not good.

To test this, we can write a small
Kylix program (shown in Listing 1)
that rewrites the file, waits for
Enter to be pressed, and then
closes the file. Compile the pro-
gram, open a console window, run
./testrewrite and let it wait at the

function TGpFileExistsMutex.Acquire(timeout: DWORD): boolean;

var
err : TErrorVal;
start: int64;
begin
if Acquired then

raise EGpFileSync.CreateFmt(SAlreadyAcquired,[SyncFilel)

else begin
start := GetTickCount;
repeat

fmHandle := open(PChar(SyncFile),0_WRONLY OR O_CREAT OR O_EXCL, 0);
if fmHandle = INVALID_HANDLE_VALUE then begin

err := GetlLastError;
if err = EEXIST then begin

if not Elapsed(start,timeout) then

Sleep(RetryDelay)
end else

raise EGpFileSync.CreateFmt(SCannotAccessFile,[
SyncFile,SysErrorMessage(err)]);

end else
err := 0;

until (err = 0) or Elapsed(start,timeout);

Result := (err = 0);
end;
end; { TGpFileExistsMutex.Acquire }

0 Listing 3: Releasing a file-based mutex.

procedure TGpFileExistsMutex.Release;
begin
if Acquired then begin
__close(fmHandle);

DeleteFile(SyncFile);
fmHandle := INVALID_HANDLE_VALUE;
end else

raise EGpFileSync.CreateFmt(SNotAcquired,[SyncFilel);

end; { TGpFileExistsMutex.Release }

August 2002

The Delphi Magazine

point where it waits for the Enter
key. Then open another console
window and run ./testrewrite
again. You'll see that the second
instance is also able to rewrite the
file without a problem.

The correct way to open a file for
exclusive access (if we ignore the
NFS 2 problem I mentioned before)
is to specify another combination
of flags in the open call. Instead of
the O0_TRUNC we must specify
0_EXcL, which makes sure that the
file is only created if it doesn’t
exist. Instead of 0_RDWR we will use
the more restrictive O0_WRONLY
(because we will not read from the
file at all). To do this, we must call
the open function directly:

open(fileName, O_CREAT or
0_EXCL or O_WRONLY, 0)

If open fails to create the file, it will
return -1.In that case, the GetLast-
Error function will tell us whether
the open failed because the target
file already exists (the error will be
EEXIST) or for some other reason.
To implement the Acquire as we
did months ago for Windows, we’ll
have to loop until the file is suc-
cessfully created or until the
allowed time (specified by the
caller) is exceeded (see Listing 2).

At least releasing the mutex is
trivial: we only have to close the
handle and delete the lock file (the
Release method is shown in Listing
3). Actually, the handle to the lock
file is not really needed and it
would be possible to close the
handle in the Acquire method
immediately after the file is suc-
cessfully created. TGpFileExists-
Mutex keeps the handle open only
because it can then be used to test
if the mutex is currently acquired
or not (the Acquired function

51

function TGpLinkedFileMutex.Acquire(timeout: DWORD):
boolean;
var
err : TErrorVal;
start: int64;
selfName: array [0..255] of char;
fileStat: TStatBuf;
gotLock: boolean;
begin
if Acquired then
raise EGpFileSync.CreateFmt(SAlreadyAcquired,[SyncFilel)
else begin
gotLock := false;
gethostname(selfName,Size0f(selfName)-1);
fmUniqueFile := Format('%s%s:%d:%d',
[ExtractFilePath(ExpandFileName(SyncFile)),
selfName,getpid, GetCurrentThreadID]);

fmUniqueFile,SysErrorMessage(err)]);
end else begin
start := GetTickCount;
repeat
if ;1nk(PChar(fmUn1queF11e),PChar(SyncFi]e)) =0
then
if stat(PChar(fmUniqueFile),fileStat) = 0 then
gotLock := fileStat.st_nlink = 2;
5nt11 gotLock or Elapsed(start,timeout);
end;
if gotLock then
Result := true
else begin
__close(fmHandle);
fmHandle := INVALID_HANDLE_VALUE;
unlink(PChar(fmUniqueFile));
Result := false;

fmHandle := open(PChar(fmUniqueFile),0_WRONLY OR end;

0_CREAT OR O0_EXCL, 0);
if fmHandle = INVALID_HANDLE_VALUE
err := GetlLastError;

raise EGpFileSync.CreateFmt(SCannotAccessFile,[

0 Listing 4: Acquiring a linked
file mutex.

simply tests the fmHandle against
INVALID_HANDLE_VALUE).

All the Linux mutex implementa-
tions I'll show you are stored in the
file GpLinuxFileSync. They share
the common ancestor class,
TGpFileSynchroObject, that defines
some common behaviour. To test
the classes, I have written a simple
test program, shown in Figure 1
and available on this month’s disk.
To test any of the mutex implemen-
tations, run two copies of the pro-
gram from the same directory and
then play with the Acquire and
Release buttons.

Linked Files

To solve the NFS version 2 prob-
lem, we need another approach.

O Figure 1

K ' GpLinuxFileSync tester:

then begin

procedure TGpLinkedFileMutex.Release;
begin
if Acquired then begin
__close(fmHandle);
fmHandle := INVALID_HANDLE_VALUE;
unlink(PChar(fmUniqueFile));
unlink(PChar(SyncFile));
end else

end;
end; { TGpLinkedFileMutex.Acquire }

raise EGpFileSync.CreateFmt(SNotAcquired, [SyncFilel);

end; { TGpLinkedFileMutex.Release }

Instead of using file creation to
guarantee atomicity, we will be
using file linking.

Linking is a feature of all Unix file
systems. Two different concepts
are hidden under a common name:
hard linking and soft linking. The
former is a way to give the physical
file two different names. Both
names point to the same data and
one is indistinguishable from the
other [See the following article on
NTFS hard links to see how Windows
does it. Ed]. The latter, which inter-
ests us more, is just a pointer to
another file or directory, similar to

— File Exists
Achuire Acquired?
— Linked File
Achuire Acquired?
Release
— Locked File
Achuire Acquired?
Release |1 Mandatory
|

Acguired
Yes
Released

52

The Delphi Magazine

0 Listing 5: Releasing a linked
file mutex.

a Windows shortcut, only imple-
mented on the lower (file system)
level. To the application, the sym-
bolic link appears as a normal file
or folder.

The manpage for open(2) recom-
mends the following approach to
creating lock files on all file sys-
tems. Create a unique file on the
file system where the lock file is
stored. Use the 1ink call to make
the link to the lock file from the
unique file. Ignore the result of the
Tink call. Use the stat call on the
unique file to check if its link count
has increased to 2. You can read
manpages online, by the way:

www.linuxcentral.com/Tlinux/
man-pages/open.2.html

Instead of file creation this
approach uses the 1ink system
function to guarantee atomicity.
Even on NFS volumes, 1ink guaran-
tees that only one process is able
to link to the lock file, even if two
processes start the linking opera-
tion at precisely the same time.
The stat step must be used
because Tink may not return the
correct result on NFS.

Although the approach looks
quite convoluted, it is really simple

Issue 84

to implement. To create a unique
file we can use the name of the
computer (retrieved with the
gethostname call) and the process
ID (retrieved with the getpid call).
To be completely sure of unique-
ness, we can also add the ID of the
current thread. Kylix kindly pro-
vides the portable GetCurrent-
ThreadID function to do the latter.
The Acquire method implemented
in this manner is shown in Listing 4.
Releasing the mutex is almost as
simple as in the previous version:
we only have to close, unlink and
delete the unique file (Listing 5).

Advisory Locking
Remember what I have said at the
beginning: there is no locking on
Linux? That was, well, a lie. Or at
least an oversimplification. It
would be more correct to say that
there is no mandatory locking on
Linux. If applications are working
together, they can achieve near-
locking nirvana even on Linux.
Unix versions (and Linux with
them) typically support a notion of
advisory locking. This is a concept
that is strange to Windows-only
programmers: it dictates that an
application should call a special
locking function before accessing a
shared file. The function will either
lock the file and allow the applica-
tion to proceed, or return an error.
It should be said loud and clear
that a file locked in this manner
remains locked only for applica-
tions that are using advisory lock-
ing to access it. If a misbehaved
application tries to directly access

0 Listing 7: Acquiring a locked
file mutex.

function TGpLockedFileMutex.Acquire(timeout: DWORD):

boolean;
var
err : TErrorVal;
start: int64;
mode: cardinal;
begin

an advisory-locked file, it will suc-
ceed! This is the true Unix spirit:
live by the rules and you will peace-
fully coexist with others. If that
doesn’t work, bypass the rules and
do it your own way (and take
the blame when others have
problems because of you).

What are the problems? Besides
misbehaved applications, there
are plenty. Some file systems may
not support advisory locking.
You’'ll have a hard time configuring
NFS 3 to support it. Forget NFS 2, it
doesn’t support advisory locking
at all. And you definitely won’t be
able to use advisory locking for
cross-platform work. At least
nobody could help me configure
my Samba installation in a way that
will make Windows locking and
Linux advisory locking peacefully
coexist on an SMB mount. (A plea
for help: if you do know how to
make this work, contact me!)

On the other hand, some good
words can be said on behalf of advi-
sory locking (at least when used
via the fcntl call, the way we will
use it). First, it is POSIX-compliant.
In short, that means that it is imple-
mented in the same way on most
Unix systems. Second, it should
work with a properly-configured
NFS file system (if you are

interested, in this case fcntl
requests are caught by the
rpc.lockd daemon, which for-

wards them to the Tockd on the
server host). Third, it can lock only
part of the file and can differentiate
between read and write locks.
Lastly, if a process dies, its locks
are automatically removed.

Let’s go back to the API. To advi-
sory lock a file, we can use the
fcntl function (there is another
way to lock a file, an f1ock call, but
it doesn’t work with NFS). But
before we can use fcnt1, we need a
file handle: writeable if we will
write-lock it, but for read-locking
read access will do.

Then we’ll call the fnct1 func-
tion. It accepts three parameters:
the handle of the file we will be
working with, a command describ-
ing the operation we want to exe-
cute and an argument to this
command. Fcnt1 can work in many
ways (governed by the command
parameter) from duplicating the
file descriptor to retrieving infor-
mation on its owner. Somewhere in
between, it can also lock the file.

To do this, we must pass
FD_SETLK as the second parameter

0 Listing 6: Locking a file for
reading or writing.

function LockFile(FileHandle: integer; forReading: boolean): integer;

var
LockVar: TFLock;
begin
with LockVar do begin
1_whence := SEEK_SET;
1_start := 0;
1_len := 0;
if forReading then
1_type := F_RDLCK

1_type := F_WRLCK;

end;
Result := fcnt1(FileHandle, F_SETLK, LockVar);
end; { LockFile }

end else

repeat
err := LockFile(fmHandle,false);
if err = -1 then begin

if (errno = EAGAIN) or (errno = EACCES) then begin
if not Elapsed(start,timeout) then
usleep(RetryDelay*1000)

if Acquired then
raise EGpFileSync.CreateFmt(SAlreadyAcquired,[SyncFilel)
else begin
mode := S_IRUSR OR S_IWUSR OR S_IRGRP OR S_IWGRP
OR S_IROTH OR S_IWOTH;
if fmMandatory then
mode := mode OR S_ISGID;
fmHandle :=
open(PChar(SyncFile),0_WRONLY + O_CREAT, mode);
if fmHandle = -1 then
raise EGpFileSync.CreateFmt(SCannotAccessFile,[
SyncFile,IntToStr(errno)l);
err := 0;
try

start := GetTickCount;

August 2002

raise EGpFileSync.CreateFmt(SCannotAccessFile,[
SyncFile,IntToStr(errno)l)
end;
until (err = 0) or Elapsed(start,timeout);
finally
if err <> 0 then begin
__close(fmHandle);

fmHandle := INVALID_HANDLE_VALUE;
end;
end;
Result := (err = 0);
end;

end; { TGpLockedFileMutex.Acquire }

The Delphi Magazine 53

and the address of the structure
TFLock (declared in the unit Libc). A
helper function LockFile (see List-
ing 6) will set this structure to lock
the whole file for reading or writing
(depending on a parameter), call
the fcnt1 function and return the
status code.

If LockFile returns 0, we have the
lock and we can proceed. Other-
wise, we’ll wait a little and retry, as
in all the implementations we’ve
seen so far. To release the lock, we
only have to close the file handle.
Acquire is somewhat overcom-
plicated, because it also tries to
implement mandatory System V
locking (described next): it is
shown in Listing 7.

As you may have noticed, the
TGpLockedFileMutex.Acquire rou-
tine checks the internal flag named
fmMandatory before opening thefile.
What is that? Didn’t I just tell
you that Linux only knows about
advisory locking?

Well, that was again a slight mis-
information. There is a way to man-
datory-lock a file: it is called
System V mandatory locking.
System V is of course the brand of
Unix where this locking was first
implemented. It is rarely used, usu-
ally only works internally on one
computer (so forget about multi-
computer and multi-platform syn-
chronization), and cannot help us
in synchronizing Windows and
Linux applications. Nevertheless,
[have added the mandatory lock-
ing support to the TGpLockedFile-
Mutex class (using the parameter
mandatoryLock in the constructor) if
somebody wants to play with it.

Where To Keep The Lock
Animportant question is where the
lock file should be stored. Of
course, if you’ll be synchronizing
Windows and Linux machines,
you’ll put the lock file on the SMB
mount. But if you only want to lock
aresource on a local machine, you
have many options.

My advice would be to adhere to
the Filesystem Hierarchy Standard
(FHS: www.pathname.com/fhs/), a
document that tries to bring some
order in the typical Unix mess. FHS
advises on the best placement of
more important classes of files

54

Linux Programming Resources

Secure Programming for Linux and Unix HOWTO / Structure Program Internals

and Approach / Avoid Race Conditions:

www.linuxdocs.org/HOWTOs/Secure-Programs-HOWTO/avoid-race.html

Advanced Linux Programming:

www.advancedlinuxprogramming.com/advanced-linux-programming.pdf

HERT Tutorial Links: www.hert.org/docs/tutorials/

Programming Texts and Tutorials:

http://stommel.tamu.edu/~baum/programming.html

Unix Programming FAQ: www.landfield.com/fags/unix-fag/programmer/fag/

Secure Programming for Linux and Unix HOWTO:

www.dwheeler.com/secure-programs/

Linux programming: www.linuxprogramming.com/

Mandatory File Locking For The Linux Operating System:
www.linuxhq.com/kernel/v2.0/doc/mandatory.txt.html

Linux Central Man Pages: www.linuxcentral.com/linux/man-pages/

Linux MAN Pages Indexed HTML version: http:/linux.ctyme.com/

Linoleum Linux programming resources: http:/leapster.org/linoleum/

The LinuX files: www.cplus.about.com/compute/cplus/cs/thelinuxfiles/

Filesystem Hierarchy Standard: www.pathname.com/fhs/

(shared programs, system utilities,
application settings, lock files...).

If you just want to be sure that
your application doesn’t execute
more than once on a given
machine, the FHS advice is to
create a lock file /var/run/
NAME.pid where NAME is the
application name and pid is its pro-
cess ID, which the getpid function
will kindly provide. If you are syn-
chronizing access to a device, you
should create this file in /var/lock.
For some other ideas, check Sec-
tion 2 of the FHS.

Conclusions

As you have seen, synchronizing
Linux processes is hard but not
impossible with some careful pro-
gramming. But I should also add

The Delphi Magazine

that file-based solutions are really
useful only to synchronize access
torarely used resources (for exam-
ple, shared files that are accessed
less than once every few seconds).
If your requirements are higher,
you should search for another
solution. A database, maybe, or a
custom synchronization server
using TCP/IP.

Primoz Gabrijelcic is the R&D
Manager of FAB d.o.o. in
Slovenia. You can contact him at
gp@fab-online.com

All code in this article is freeware

and may be freely reused in your
own applications.

Issue 84

	What Works On Windows...
	...May Not Work On Linux
	A File Is A Mutex
	Linked Files
	Advisory Locking
	Where Linux processes is hard but not
 and may be freely reused in your
	Conclusions

