
January 2001 The Delphi Magazine 55

Time Is The Simplest Thing
by Primoz Gabrijelcic

So said Clifford D Simak, but
Simak got it all wrong. Time is

indeed one of the most compli-
cated things on this planet. We
have made such a mess of it that
it’s hard even to agree on a meeting
time with somebody living a few
milliseconds away (in internet
terms, that is).

It all started in 1961 (well, it all
started maybe some ten billion
years ago, but what’s a few orders
of magnitude between friends?)
when Analog published The Fisher-
man, probably not the best novel
Clifford D Simak had ever written.
It’s certainly readable, perhaps
even entertaining, but I’m afraid
not very memorable, except for a
couple of sentences spoken by a
friendly alien: ‘Time, I’ll tell you
about time. Time is the simplest
thing.’ What an understatement.

Nowadays, time has a meaning
only if you are discussing TV
programmes with your significant
other. Send an email to a friend and
it may arrive before it was sent. Try
to arrange an online meeting and
you can be sure that only half of the
invitees will be connected at the
same time (and that won’t be the
arranged time). Save a file to a disk,
then check it an hour later, and
its creation time may well have
changed.

There are too many times. There
is Greenwich Time and Military
Time and Pacific Standard Time
and Co-ordinated Universal Time
and Central European Time and
Local Time and System Time and
Swatch Internet Time and Too Late
Time, to mention just a few of
them. And it is a royal pain in
the you-know-where to convert
between them. When you think you
have sorted it out, somebody (usu-
ally not your friend, at least not
after his remark) reminds you of
Daylight Saving Time and your
beautiful solution just falls apart.

That happened to me, of course.
I tried to write a simple routine that
could convert a whole bunch

of TDateTimes from local time to
some more stable time base that
doesn’t make wild jumps twice a
year. After two hours browsing
MSDN and the internet, I was no
closer to a solution. Apparently,
Windows does not have this func-
tion, nobody on the internet has
this function, and nobody cares
about this function. Even more, I
was hopelessly lost in the world of
UTC, GMT, TZ, +0200, and similar
stuff. I dare you: do you know what
a leap second is? No? Well, neither
did I.

Whilst browsing the net I did find
a good collection of Delphi date
and time functions: ESBDates. It
contained a function that should
have solved half of my problem. It
was, however, desperately broken.
Fear not, I reported that to the
author and this broken function is
not included in ESBDates anymore.
Downgrading? Not at all, it is
replaced with all the functions
from the unit accompanying this
article (which is on the companion
disk of course). So if you’re doing
any date and time calculations,
take a look at ESBDates at www.
esbconsult.com.au since it will
save you lots of work.

Greenwich Mean Time
In the beginning, there was chaos.
Utter and complete chaos. Every
town has its own ‘sun’ time. There
was little communication between
towns and therefore no pressure to
establish a common time base. The
first to feel this pressure was the
navy when, in the fifteenth century,
travel to the ‘New World’ flour-
ished. To solve some problems, a
common time base was estab-
lished: Greenwich Mean Time
(GMT). GMT is simply a time at
some well-defined point, no more
and no less than that. It is not
affected by Daylight Saving Time
(or Summer Time or whatever you
may call it in your country).

Well, the British Navy was using
GMT, but that was it. Continental

people were just not interested in
it. That changed only in the nine-
teenth century with the introduc-
tion of the railways. So, in 1880
Greenwich Mean Time became
adopted officially by the British
Parliament, in 1883 it was adopted
by the USA, and in 1884 it was
adopted internationally.

Today, GMT has lost some of its
importance. It is defined in terms
of Earth rotation, which is just not
accurate enough. Therefore, in
1972 the new Coordinated Univer-
sal Time (UTC: don’t ask me why
they didn’t call it Universal Time
Coordinated to match the acro-
nym!) was established. It is defined
using the atomic clock and is
always at the most 0.9 sec different
to GMT. But GMT is still widely
used, for example in email headers
and internet cookies.

Actually, the terms UTC and
GMT are often used interchange-
ably, as both standards define a
time that is almost the same for all
practical purposes. The typical
personal computer clock is so
unstable that you need to have
some time synchronisation soft-
ware installed if time is important
to you and you can count on this
time synchronisation software to
keep you in sync with UTC. If you
don’t have such software installed,
a good (and free) choice is Dimen-
sion 4: see the list of internet
references at the end of the article
for this URL and lots more.

Besides UTC there are also some
less intelligent inventions like VRT
(Virtual Reality Time) and Swatch
Internet Time. Swatch time, for
example, is a weird idea based on
the concept that time zones are
bad and it should be time 0 at the
same moment everywhere.

I really could not find some
‘hard’ definition of Swatch Internet
Time. All web documents con-
tained mostly hand-waving: there
is not much to base any conver-
sion functions on. Defining Swatch
Internet Time is not hard, it is

56 The Delphi Magazine Issue 65

simply GMT plus one hour (with-
out any Daylight Saving Time non-
sense), where the time portion is
specified as an integer in the range
0 to 999 (called Beat, usually
marked with a prefix @). That is all.
If you need a conversion function
to convert between UTC and
Swatch Internet Time, take it from
Listing 1. UTC time is represented
with a simple TDateTime variable,

while Swatch Internet Time is
stored in two variables, one holds
the date part and other holds the
Beat part. This complication is
required because the date part of
Swatch Internet Time is not always
equal to the date part of Coordi-
nated Universal Time. For exam-
ple, the UTC time of 23:59 on 31st
December 1999 corresponds to
GMT+1 time 00:59 on 1st January

2000, which is the same as @041 on
1st January 2000 Swatch Internet
Time.

Let’s state this again: while local
time changes as you traverse the
globe, Swatch time does not. For
example, when the local time is
16:42 in Central Europe, the local
time in the United Kingdom is 15:42
and the local time in Canada is
8:42, but it is @654 all over the

TTimeZoneInformation Record And Day-In-A-Month Format
Delphi’s TTimeZoneInformation record (which is defined
in Windows.pas) is just an alias for Windows’ TIME_ZONE_
INFORMATION structure and specifies information
specific to the time zone:

_TIME_ZONE_INFORMATION = record
Bias: Longint;
StandardName: array[0..31] of WCHAR;
StandardDate: TSystemTime;
StandardBias: Longint;
DaylightName: array[0..31] of WCHAR;
DaylightDate: TSystemTime;
DaylightBias: Longint;

end;
TTimeZoneInformation = _TIME_ZONE_INFORMATION;
TIME_ZONE_INFORMATION = _TIME_ZONE_INFORMATION;

The TTimeZoneInformation fields are as follows:

Bias
This specifies the current bias, in minutes, for local time
translation on this computer. The bias is the difference, in
minutes, between Coordinated Universal Time (UTC) and
local time. All translations between UTC and local time are
based on the formula UTC equals local time plus bias.

StandardName
This specifies a null-terminated string associated with
standard time on this operating system. This string is not
used by the operating system, so anything stored there
using the SetTimeZoneInformation function is returned
unchanged by the GetTimeZoneInformation function. This
string can be empty.

StandardDate
This specifies a TSystemTime record (an alias for Windows’
SYSTEMTIME structure) that contains a date and local time
when the transition from daylight saving time to standard
time occurs on this operating system. If this date is not
specified, the wMonth field of the record must be zero. If
this date is specified, the DaylightDate field must also be
specified. StandardDate field is formatted either as an
absolute date or in a day-in-a-month format (see the notes
later).

StandardBias
This specifies a bias value to be used during local time
translations that occur during standard time. This field is

ignored if a value for the StandardDate field is not sup-
plied. This value is added to the value of the Bias field to
form the bias used during standard time. In most time
zones, the value of this field is zero.

DaylightName
This specifies a null-terminated string associated with
daylight saving time on this operating system. This string
is not used by the operating system, so anything stored
there by using the SetTimeZoneInformation function is
returned unchanged by the GetTimeZoneInformation
function. This string can be empty.

DaylightDate
This specifies a TSystemTime record that contains a date
and local time when the transition from standard time to
daylight saving time occurs on this operating system. If
this date is not specified, the wMonth field of the record
must be zero. If this date is specified, the StandardDate
field must also be specified. DaylightDate field is format-
ted either as an absolute date or in a day-in-a-month
format (see notes below).

DaylightBias
This specifies a bias value to be used during local time
translations that occur during daylight saving time. This
field is ignored if a value for the DaylightDate field is not
supplied.

This value is added to the value of the Bias field to
form the bias used during daylight saving time. In most
time zones, the value of this field is - 60.

Absolute Date
To specify a transition date in absolute format, set wDay,
wMonth, and wYear to the day, month and year when the
transition should occur and leave the wDayOfWeek field
empty. Fields wHour, wMinute, and wSecond specify the
exact time when the transition should occur.

Day-In-A-Month Format
To specify a transition date in day-in-a-month format, set
wHour, wMinute and wSecond as for absolute date. Set
wYear field to zero, wDayOfWeek field to an appropriate
weekday (0 = Sunday), and the wDay field to a value in the
range 1 through 5. Values 1 to 4 specify the correspond-
ing week while 5 means ‘last’. For example, setting
wDayOfWeek = 2 and wDay = 3 means the third Tuesday in
a month, while wDayOfWeek = 0 and wDay = 5 means the
last Sunday in a month.

January 2001 The Delphi Magazine 57

function UTCToLocalTime(utctime: TDateTime): TDateTime;
var
TZ : TTimeZoneInformation;

begin
GetTimeZoneInformation (TZ);
Result := UTCToTZLocalTime(TZ,utctime);

end; { UTCToLocalTime }

➤ Listing 2: Converting UTC to local time.

const
MINUTESPERDAY = 1440;

type
TSwatchBeat = 0..999;

function UTCToSwatch(utctime: TDateTime; var internetDate: TDateTime):
TSwatchBeat;

begin
utctime := FixDT(utctime+60/MINUTESPERDAY);
internetDate := Trunc(utctime);
Result := Round(Frac(utctime)*(High(TSwatchBeat)+1));

end; { UTCToSwatch }
function SwatchToUTC(internetDate: TDateTime; internetBeats: TSwatchBeat):
TDateTime;

begin
Result :=

FixDT(Trunc(FixDT(internetDate))+(internetBeats/(High(TSwatchBeat)+1))-60/MINUTES
PERDAY);

end; { SwatchToUTC }

world. This makes time synchroni-
sation somewhat easier (just tell
the client to meet at @512) but it
also introduces all sorts of prob-
lems. You still have to know what
the time difference between your
areas and your client’s part of the
world is (you don’t want to sched-
ule the meeting at 2am, do you?)
and converting from Swatch time
to local time is not as easy as
adding or subtracting the appro-
priate number of hours (the differ-
ence between your local time and
your client’s local time). All in all, it
looks like Swatch time brings more
problems than it takes away.

The Beautiful
World Of Time Zones
Swatch time is a nice thing but it
doesn’t solve all of our problems. It
would surely be interesting if all
the places on this planet could
have the same time. It would surely
be interesting as some would have
sun at high noon and some could
enjoy a look at the stars. It would
surely be interesting, but probably
not very practical, as you can
imagine.

Therefore, we have time zones:
areas with equal time which are so
narrow that the sunrise time does
not differ very much from one end
of the time zone to the other. Time
zones started at the same time as
GMT. The USA was split into four
time zones in 1883 and the world
was divided into 24 time zones in
1884. The 24 standard meridians,
every 15° East and West of 0° at
Greenwich in the United Kingdom,
were designated as the centres of
the zones. The international date-
line was drawn to generally follow
the 180° meridian in the Pacific
Ocean. Because some countries,
islands and states do not want to
be divided into several zones, the
zones’ boundaries tend to wander
considerably from straight north-
south lines.

And then there are the trouble-
makers: time zones that are not
whole numbers away from GMT. In
Australia, for example, where there
are two time zones which are
both 9 hours 30 minutes away from
GMT. The USA has a few states
that are in one time zone when

Standard Time is active and in
another when Daylight Saving
Time takes over.

Even stranger situations appear.
For example, because of the
Olympic Games 2000, several
Australian states changed their
Daylight Savings start date from
the last Sunday in October to the
last Sunday in August, creating a
mess in the computer world.

The Horror Of
Daylight Saving Time
I have already mentioned Daylight
Saving Time (DST for short) a few
times in this article, but I never told
you much more about it. I have a
good reason for that: Daylight
Saving Time really scares me. It is a
British invention that twice a year
completely messes up my internal
clock. It was invented by William
Willet in 1907. He proposed to
improve our ‘health and happi-
ness’ (it doesn’t apply to me) by
advancing the clocks by twenty
minutes on each of four Sundays in
April, and by reversing this idea by
the same amount on four Sundays
in September. He also reckoned
that this would save the country
some £2.5 million.

The Daylight Saving Bill was
introduced in 1909 but met with no
success before the First World War
broke out. In 1916, Daylight Saving

Time was introduced as a wartime
measure of economy, not only in
Britain but also in many other
countries. Most countries aban-
doned DST after the war had
finished, then went on to reintro-
duce it eventually.

Besides making my life a misery
twice a year, DST also introduces
problems into time calculations.
Twice a year the clock makes a
weird jump: on one occasion one
hour of local time is lost, on the
second occasion one hour repeats
itself. The second problem related
to time calculations is that the
changeover time is usually speci-
fied in the form ‘last Sunday of
October’, which is not very easy to
implement in software. A third
problem is that on New Year’s Eve,
Standard Time is active in the
northern hemisphere and Daylight
Saving Time in the southern
hemisphere.

Now let’s try to program some
useful functions. First, we need
to get information about Daylight
Saving Time for the current time
zone from the Windows (forget
about other time zones, we will
deal with them later). The API func-
tion GetTimeZoneInformation will
do the trick. It takes one parameter
of type TTimeZoneInformation and
fills it with relevant data.
TTimeZoneInformation is quite a

➤ Listing 1: Swatch Internet Time conversion.

58 The Delphi Magazine Issue 65

large record, which is described in
the sidebar TTimeZoneInformation
Record And Day-In-A-Month Format.

Basically, the TTimeZoneInfor-
mation record is divided into three
parts. Bias specifies the current
bias, in minutes, for local time
translation on this computer.
StandardName, StandardDate and
StandardBias specify the Standard
Time, and the corresponding Day-
light members specify the Day-
light Saving Time. The Namepart is a
time zone name. Date specifies the
date and time when the transition
occurs (more on that later) and
Bias is the bias that is used when
this time (either ST or DST) is
active. The bias is the difference, in
minutes, between Coordinated
Universal Time (UTC) and local
time. All translations between UTC
and local time are based on the
formula UTC equals local time plus
bias.

As we will write a generic set of
functions, capable of dealing with
any time zone, we will first create a
simple wrapper function that will
just retrieve the current time zone
parameters and call a more generic
function. You can look up the
implementation of UTCToLocalTime
in Listing 2.

There is not much work done
yet, but now we come to the more
interesting part. Function UTCToTZ-
LocalTime (shown in Listing 3)
takes time zone information and
UTC time and returns the local
time. First it calls the helper func-
tion GetTZDaylightSavingInfoFor-
Year, which converts the time zone
information into a more usable
form, changeover times for a given
year. For year 2000 and the Central
Europe time zone it would return
26 March 2000 at 02:00 (the start of
Daylight Saving Time) and 29 Octo-
ber 2000 at 03:00 (the start of Stan-
dard Time). If the time zone
doesn’t use DST, GetTZDaylight-
SavingInfoForYear returns false.

In the latter case, processing
done in UTCToTZLocalTime is really
simple. It just converts the time
zone bias from minutes to a
fractional part (as times are speci-
fied in TDateTime) and subtracts it
from the UTC time.

If life were always that simple,
I would not write a complete time
zone library. Unfortunately, we
already know that most parts of
this world use some form of
Daylight Saving Time and we must
deal with it correctly. Therefore,
UTCToTZLocalTime first converts

times returned from helper func-
tion from local time to UTC by
adding appropriate bias. It then
checks whether the time zone is in
the northern or southern hemi-
sphere and calls another helper
function called Convert. It simply
checks which bias applies and sub-
tracts it from the input time. It uses
another helper function DateEQ to
compare two times for equality
because we cannot use a simple ‘=’
to do this. TDateTime is stored as a
real value and you cannot reliably
compare two real values for equal-
ity. Instead of a simple equality
test we subtract the time values
and check if the difference is less
then one tenth of one millisecond.
As the Delphi TDateTime conver-
sion functions (EncodeDate and
DecodeDate) are only exact to one
millisecond, this threshold looks
appropriate.

At the end I should mention that
function Date2Year belongs to
ESBDates and simply returns the
year part of the parameter.

Actually, converting from UTC
to local time is easy, as this is an
unambiguous operation. Con-
verting from local time to UTC is
much more complicated and
tricky. So let us now deal with the
dirty part and only then we will dis-
cuss the important function GetTZ-
DaylightSavingInfoForYear.

Digging The Dirt
As you can see from a quick look
at Listing 4, the function TZLocal-
TimeToUTC is a mess. I should add in
my defence that this is not because
I’m such a lousy programmer (at
least, I hope so), but because the
whole concept of Daylight Saving
Time is broken. Just think about it.
In 2000, Daylight Saving Time in the
Central Europe time zone became
active on 26 March 2000 at 02:00
when time was moved one hour
forward. Ponder this again: local
times from 02:00:00 to 02:59:59
never existed! The conversion
function must somehow indicate
that. I decided to return 0 in that
case.

Even more interesting things
happen when time changes back to
Standard. On 29 October 2000 at
03:00, Central Europe time jumped

➤ Listing 3: Converting UTC to any time zone.

function DateEQ(date1, date2: TDateTime): boolean;
begin
Result := (Abs(date1-date2) < 1/(10*MSecsPerDay));

end; { DateEQ }
function UTCToTZLocalTime(TZ: TTimeZoneInformation; utctime:
TDateTime): TDateTime;
function Convert(startDate, endDate: TDateTime; inBias,
outBias: longint): TDateTime;

begin
if ((utctime > startDate) or DateEQ(utctime,startDate))
and (utctime < endDate) then
Result := utctime - inBias/MINUTESPERDAY

else
Result := utctime - outBias/MINUTESPERDAY;

end; { Convert }
var
stdUTC : TDateTime;
dayUTC : TDateTime;
stdBias: longint;
dayBias: longint;
stdDate: TDateTime;
dayDate: TDateTime;

begin { UTCToTZLocalTime }
if GetTZDaylightSavingInfoForYear(TZ, Date2Year(utctime),
dayDate, stdDate, dayBias, stdBias) then begin
dayUTC := dayDate + stdBias/MINUTESPERDAY;
stdUTC := stdDate + dayBias/MINUTESPERDAY;
if dayUTC < stdUTC then
// northern hemisphere
Result := Convert(dayUTC,stdUTC,dayBias,stdBias)

else
// southern hemisphere
Result := Convert(stdUTC,dayUTC,stdBias,dayBias);

end else
// TZ does not use DST
Result := utctime - TZ.bias/MINUTESPERDAY;

end; { UTCToTZLocalTime }

January 2001 The Delphi Magazine 59

function TZLocalTimeToUTC(TZ: TTimeZoneInformation; loctime:
TDateTime; preferDST: boolean): TDateTime;
function Convert(startDate, endDate, startOverl, endOverl: TDateTime;
startInval, endInval: TDateTime; inBias, outBias, overlBias: longint):
TDateTime;

begin
if ((locTime > startOverl) or DateEQ(locTime,startOverl)) and
(locTime < endOverl) then
Result := loctime + overlBias/MINUTESPERDAY

else if ((locTime > startInval) or DateEQ(locTime,startInval)) and
(locTime < endInval) then
Result := 0

else if ((locTime > startDate) or DateEQ(locTime,startDate)) and
(locTime < endDate) then
Result := loctime + inBias/MINUTESPERDAY

else
Result := loctime + outBias/MINUTESPERDAY;

end; { Convert }
var
dltBias : real;
overBias, stdBias, dayBias : longint;
stdDate, dayDate : TDateTime;

begin { TZLocalTimeToUTC }
if GetTZDaylightSavingInfoForYear(TZ, Date2Year(loctime), dayDate, stdDate,
dayBias, stdBias) then begin
if preferDST then
overBias := dayBias

else
overBias := stdBias;

dltBias := (stdBias-dayBias)/MINUTESPERDAY;
if dayDate < stdDate then begin // northern hemisphere
if dayBias < stdBias then // overlap at stdDate
Result := Convert(dayDate, stdDate, stdDate-dltBias, stdDate, dayDate,
dayDate+dltBias, dayBias, stdBias, overBias)

// overlap at dayDate - that actually never happens
else
Result := Convert(dayDate, stdDate, dayDate+dltBias, dayDate, stdDate,
stdDate-dltBias, dayBias, stdBias, overBias);

end else begin // southern hemisphere
if dayBias < stdBias then // overlap at stdDate
Result := Convert(stdDate, dayDate, stdDate-dltBias, stdDate, dayDate,
dayDate+dltBias, stdBias, dayBias, overBias)

// overlap at dayDate - that actually never happens
else
Result := Convert(stdDate, dayDate, dayDate+dltBias, dayDate, stdDate,
stdDate-dltBias, stdBias, dayBias, overBias);

end;
end else
// TZ does not use DST
Result := loctime + TZ.bias/MINUTESPERDAY;

end; { TZLocalTimeToUTC }
function LocalTimeToUTC(loctime: TDateTime; preferDST: boolean): TDateTime;
var
TZ: TTimeZoneInformation;

begin
GetTimeZoneInformation (TZ);
Result := TZLocalTimeToUTC(TZ,loctime,preferDST);

end; { LocalTimeToUTC }

➤ Listing 4: Converting any time zone to UTC

back to 02:00. One hour from
02:00:00 to 02:59:59 is repeated and
we cannot tell if the local time of
02:30 corresponds to the UTC time
01:30 (as it would if the local time
was using Standard Time at that
moment) or 00:30 (if the local time
was using Daylight Saving Time at
that juncture).

This problem cannot be solved
in a conversion function alone, but
requires the programmer’s help.
That’s why TZLocalTimeToUTC (and
LocalTimeToUTC, which is again a
simple wrapper) takes additional
parameter preferDST that tells the
function whether it should return
DST or Standard Time in ambigu-
ous cases. This overlap happens
when DST changes back to Stan-
dard Time in all the existing time
zones. In theory, this could also
happen when Standard Time
changes to Daylight Saving Time,
but in that case DST would not
deserve the name but should have
been called Daylight Losing Time.
The conversion function, however,
handles both cases correctly.

If you don’t know whether you
should convert ambiguous local
time according to the Daylight or
Standard settings, you should, err,
drop the responsibility on the
user. A small code fragment in List-
ing 5 shows how to check for
invalid and ambiguous times.

The Last Sunday Of October
We still don’t know how to solve
one important task: calculate the
changeover times for a given year.
Microsoft’s documentation speci-
fies that those times can be stored
in TTimeZoneInformation in two
formats, an ‘absolute date’ or a
‘day-in-a-month’ format (see the
sidebar TTimeZoneInformation
Record And Day-In-A-Month Format
for further details).

The absolute date format is not
actually very useful as it can only
specify dates in one specific year
(at least, that is what the official
Microsoft documentation states)
and is in fact never used. All the
existing time zones are specified
using day-in-a-month format. Even
more, Microsoft’s own Time Zone
Editor (TZEDIT, found for example
on the Windows NT Resource Kit

➤ Listing 6: Calculating changeover times for given time zone and year.

function GetTZDaylightSavingInfoForYear(TZ: TTimeZoneInformation; year: word;
var DaylightDate, StandardDate: TDateTime; var DaylightBias, StandardBias:
longint): boolean;

begin
Result := false;
if (TZ.DaylightDate.wMonth <> 0) and (TZ.StandardDate.wMonth <> 0) then begin
DaylightDate := DSTDate2Date(TZ.DaylightDate,year);
StandardDate := DSTDate2Date(TZ.StandardDate,year);
DaylightBias := TZ.Bias+TZ.DaylightBias;
StandardBias := TZ.Bias+TZ.StandardBias;
Result := (DaylightDate <> 0) and (StandardDate <> 0);

end;
end; { GetTZDaylightSavingInfoForYear }

➤ Listing 5: Detecting ambiguous and invalid cases.

date := TZLocalTimeToUTC(TZ,localTime,false);
if date <> 0 then begin
// valid time
date2 := TZLocalTimeToUTC(TZ,localTime,true);
if not DateEQ(date,date2) then begin
//ambiguous conversion

end else begin
//exact conversion

end;
else begin

//invalid local time
end;

60 The Delphi Magazine Issue 65

Supplement 2) cannot work at all
with the absolute date format.

Because there are no guidelines
on how to apply the absolute date
format for an arbitrary year, I
decided to work only with the
day-in-a-month format. Absolute
dates are only partially supported,
time zone functions will return
correct changeover times for the
year specified in the absolute date
and an error for all other years.

Let’s now focus on functions that
really do something useful. The
function GetTZDaylightSavingInfo-
ForYear (which is shown in Listing
6) implements hardly more
than some basic data check-
ing, calls DSTDate2Date and
adds an appropriate bias to the
result. DSTDate2Date (see List-
ing 7) uses SystemTimeToDate-
Time (defined in SysUtils) to
deal with absolute dates and
calls a real workhorse, DayOf-
Month2Date (in Listing 8), for
the day-in-a-month case.

We can be sure that Windows
knows how to convert a day-in-
a-month formatted date into some-
thing more readable. The only
problem is that no such function is
included in the Windows API.
Sadly, they forgot to export it and
therefore we have to write our
own: I’ve already mentioned it and
it’s called DayOfMonth2Date.

The approach is straightfor-
ward. If the week is represented by
a number from 1 to 4, this function
starts by calculating the first day in

the month. For example, Iran Stan-
dard Time starts on the fourth
Tuesday of September and the first
day of September 2000 was a
Friday. It then calculates the first
occurrence of the day we are
searching for (Tuesday in our
example; the first Tuesday in Sep-
tember 2000 was the 5th) and from
that it is very simple to get nth
occurrence of that day (the fourth
Tuesday of September 2000 was
the 26th).

When week number 5 is speci-
fied (meaning the last week of the
month, however many weeks the
month may have), the approach is
similar except that we have to
work from the end of the month.
First, we calculate the last day of
the month with the help of the
EDBDates function DaysOfMonth.
For example, Ekaterinburg Day-
light Time starts on the last Sunday
of March and the last day of March
2000 was a Friday. From that, we
calculate the last occurrence of
the day we are searching for: the
last Sunday in March 2000 was on
the 26th.

A Time Zone
That Is Not My Own
OK, but what if we want to convert
a time from some other time zone?
Where can we get the data? If you
have the information about the
changeover dates and biases, you
can just put them into variables of
type TTimeZoneInformation and call
the appropriate function. If you
don’t have the changeover infor-
mation, you can read it from the
Windows registry.

It took me some time to find this
information, but eventually I came
across the Microsoft Knowledge
Base article Q115231, which

function DSTDate2Date(dstDate: TSystemTime; year: word): TDateTime;
begin
if dstDate.wMonth = 0 then
Result := 0

else if dstDate.wYear = 0 then begin
Result := DayOfMonth2Date(year, dstDate.wMonth,dstDate.wDay,
dstDate.wDayOfWeek+1{convert to Delphi Style}) +
EncodeTime(dstDate.wHour, dstDate.wMinute,dstDate.wSecond,
dstDate.wMilliseconds);

end else if dstDate.wYear = year then
Result := SystemTimeToDateTime(dstDate)

else
Result := 0;

end; { DSTDate2Date }

function DayOfMonth2Date(year,month,weekInMonth,dayInWeek: word): TDateTime;
var
days: integer;
day : integer;

begin
if (weekInMonth >= 1) and (weekInMonth <= 4) then begin
// get first day in month
day := DayOfWeek(EncodeDate(year,month,1));
// get first dayInWeek in month
day := 1 + dayInWeek-day;
if day <= 0 then
Inc(day,7);

// get weekInMonth-th dayInWeek in month
day := day + 7*(weekInMonth-1);
Result := EncodeDate(year,month,day);

end else if weekInMonth = 5 then begin
// last week, calculate from end of month
days := DaysInMonth(EncodeDate(year,month,1));
// get last day in month
day := DayOfWeek(EncodeDate(year,month,days));
day := days + (dayInWeek-day);
if day > days then
// get last dayInWeek in month
Dec(day,7);

Result := EncodeDate(year,month,day);
end else
Result := 0;

end; { DayOfMonth2Date }

➤ Listing 8: Converting day-in-a-month format to TDateTime.

➤ Figure 1: Layout of time zone data in the Windows registry.

➤ Listing 7: Converting time zone transition date to TDateTime.

62 The Delphi Magazine Issue 65

type
TRegTZI = packed record
Bias: Longint;
StandardBias: Longint;
DaylightBias: Longint;
StandardDate: TSystemTime;
DaylightDate: TSystemTime;

end;
function GetTZFromRegistry(reg: TBetterRegistry; var displayName: string;
var TZ: TTimeZoneInformation): boolean;

var
regTZI: TRegTZI;

begin
Result := false;
if assigned(reg) then begin
with reg do begin
// data in correct format - hope, hope
if GetDataSize('TZI') = SizeOf(regTZI) then begin
displayName := ReadString('Display');
StringToWideChar(ReadString('Std'),@TZ.StandardName,
SizeOf(TZ.StandardName) div SizeOf(WideChar));

StringToWideChar(ReadString('Dlt'),@TZ.DaylightName,
SizeOf(TZ.DaylightName) div SizeOf(WideChar));

ReadBinaryData('TZI',regTZI,SizeOf(regTZI));
TZ.Bias := regTZI.Bias;
TZ.StandardBias := regTZI.StandardBias;
TZ.DaylightBias := regTZI.DaylightBias;
TZ.StandardDate := regTZI.StandardDate;
TZ.DaylightDate := regTZI.DaylightDate;
Result := true;

end;
end; //with

end;
end; { GetTZFromRegistry }

➤ Listing 9: Reading time zone data from the registry.

➤ Figure 2: GpTimezone test program.

describes the relevant registry
key. All the data is stored in the key

HKEY_LOCAL_MACHINE\SOFTWARE\
Microsoft\Windows NT\
CurrentVersion\Time Zones

for Windows NT or 2000, or

HKEY_LOCAL_MACHINE\SOFTWARE\
Microsoft\Windows\
CurrentVersion\Time Zones

for Windows 95 and 98. Each time
the zone is stored as a subkey (for
example Central Europe) that
holds five values: Display (the dis-
play name, which you can see in
the Date/Time Con-
trol Panel applet), Dlt
(Daylight Saving
name), Std (Standard
Time name), MapID
(location on the map
in the Date/Time
applet) and TZI (time
zone information).
See Figure 1 for an
example.

The data that is of
interest to us is
stored in the value
named TZI. It is stored
as a 44-byte record
holding the biases
(default, standard

and daylight) and the changeover
times. You can see it in Listing 9.
While designing a set of functions
to access this information I evalu-
ated quite a few approaches but at
the end decided to keep it simple.
So I have created two functions.
GetTZCount returns the number of
time zones and GetTZ fetches all the
relevant data from the registry and
packs it into a TTimeZoneInform-
ation record, which you can use as
a parameter to other functions. All
access to registry is done via the
internal class TBetterRegistry,
which is equal to TRegistry in

Delphi 4 and higher, and imple-
ments the function OpenKeyRead-
Only in Delphi 2 and 3.

Loose Ends
Not all the functions mentioned in
this article are shown in print, as
that would take much too much
valuable space, so I recommend
that you use the complete
GpTimezone library on the disk.
It’s also on my website at

http://17slon.com/gp/gp/
index.htm#GpTimezone

There you can also find the test
program for GpTimezone (shown
in Figure 2), which is almost a
full-featured time zone editor, as
well as updates. The source is, of
course, included.

Finally, remember that all
through this article we have been
using the Gregorian calendar. If
you want to complicate your life
still further, read Delphi For Time
Travellers, published in The Delphi
Magazine, Issue 34 (June 98), for
details of how to convert between
different date systems.

Primoz Gabrijelcic is still ponder-
ing Simak’s sentence. Neverthe-
less, he will try to respond to all
mail sent to gabr@17slon.com.
You may reuse the code that
accompanies this article even if
you have never read any of
Clifford’s novels.

	Greenwich Mean Time
	TTimeZoneInformation Record And Day-In-A-Month Format
	The Beautiful World Of Time Zones
	The Horror Of Daylight Saving Time
	Digging The Dirt
	The Last Sunday Of October
	A Time Zone That Is Not My Own
	Loose Ends

