Safer Sockets

by Primoz Gabrijelcic

et’s face it: Delphi’'s VCL has

bugs. Itis just too big and com-
plex to be completely cleaned up.
While some bugs are justirritating,
others can be very instructive. I'll
show you one such bug and then
discuss some ways of working
around it (fixing it, as you'll see,
won’t always be possible).

Blocking Sockets

Today’s culprit is TWinSocket
Stream, a streaming class intro-
duced in Delphi 3. It hardly

changed in Delphi 4: some integers
were replaced with DWORDs. If you
have the VCL source code, you'll
find itin the ScktComp unit, which is
in SOURCENINTERNET for Delphi 3 or
SOURCE\VCL for Delphi 4. If you
don’t have the source don’t worry:
you should still find some interest-
ing facts and ideas in this article.

It all starts with sockets. Sockets
are a standardised way of access-
ing TCP/IP communication layers
from a program. In other words, if
you develop internet applications,
you need sockets. A socket repre-
sents two-way communication;
you write something to the socket
and then you get a reply.

There are two ways of accessing
the socket, non-blocking and
blocking. In the former scenario, a
socket generates events when it
needs data or it has data ready. So
you must build a state machine to
implement a simple data exchange
algorithm. If that seems too much
trouble, you can always access a
socket in the blocking mode. You
just Write to the socket and the
program stops until all data is writ-
ten. Similarly with Read. Just like
using a file.

Are there drawbacks? Well, I've
already said it: when you access a
socket in blocking mode, the pro-
gram blocks until the operation is
finished. Also, sockets have no
built-in timeout mechanism, so you
must either watch the communica-
tion with another thread or use a
special streaming class for reading

30

and writing... you guessed it,
TWinSocketStream!

Enter TWinSocketStream
TWinSocketStream is derived from
TStream. [t overrides the Read, Write
and Seek functions, and adds Wait
ForData (Listing 1). Also changed is
the constructor, which takes two
arguments:; the socket that the
instance of TWinSocketStream is
bound to and the timeout value (in
milliseconds). This is used in the
Read and Write functions: they time-
out after the specified time and
return 0 (that is, 0 bytes were
received or transmitted).
WaitForData returns when datais
ready to be read or when the speci-
fied timeout is exceeded. Seek just
returns 0, as seeking cannot be
implemented on sockets.

How It Should Work
The Read function takes just two
parameters, Buffer and Count. A

TWinSocketStream = class(TStream)
private
FSocket: TCustomWinSocket;
FTimeout: Longint;
FEvent: TSimpleEvent;
public

maximum of Count bytes will be
read into Buffer and then Read will
return. Read will return after some
time (the timeout value is defined
inTWinSocketStream.Create) even if
not enough data was read. The
function result is the number of
bytes read, or 0 if it times out.

The implementation of TWin
SocketStream.Read is very neat and
effective (see Listing 2). First, the
Overlapped memory structure is
prepared. Then ReadFile is called.
We already know the Buffer and
Count parameters. Result returns
the number of bytes read and Over-
1apped specifies that the read oper-
ation is asynchronous (note that
asynchronous operations with
sockets are supported even in
Windows 95). The program will
continue execution and the event
FEvent (specified in Overlapped.
hevent) will be fired after all the
datais read. An exception is raised
if ReadFile fails.

Read then waits at least FTimeOut
milliseconds (that is, the timeout
value specified in the constructor)
for FEvent to fire. If a timeout
occurs, 0 is returned, otherwise
GetOverlappedResult is called to

constructor Create(ASocket: TCustomWinSocket; TimeOut: Longint);

destructor Destroy; override;

function WaitForData(Timeout: Longint): Boolean;

function Read(var Buffer; Count: Longint): Longint; override;
function Write(const Buffer; Count: Longint): Longint; override;
function Seek(0Offset: Longint; Origin: Word): Longint; override;

en

0 Above: Listing 1

property TimeOut: Longint read FTimeout write FTimeout;
d;

[J Below: Listing 2

function TWinSocketStream.Read(var Buffer; Count: Longint): Longint;

var
Overlapped: TOverlapped;
ErrorCode: Integer;
begin
FSocket.Lock;
try

Fil1Char(OVerlapped, SizeOf(Overlapped), 0);

Overlapped.hEvent := FEvent.Handle;

if not ReadFile(FSocket.SocketHandle, Buffer, Count, DWORD(Result),
@0verlapped) and (GetLastError <> ERROR_IO_PENDING) then begin

ErrorCode := GetlLastError;

raise ESocketError.CreateFmt(sSocketIOError, [sSocketRead, ErrorCode,

SysErrorMessage(ErrorCode)]);

end;
if FEvent.WaitFor(FTimeOut) <> wrSignaled then

Result :=0
else begin

GetOverlappedResult(FSocket.SocketHandle, Overlapped, DWORD(Result),

False);
FEvent.ResetEvent;
end;
finally
FSocket.UnTock;
end;
end;

The Delphi Magazine

Issue 44

retrieve the result of the ReadFile
operation and that result is
returned. FEvent is then reset.

Oh, and everything is of course
wrapped into a critical section
(FSocket.Lock to FSocket.Unlock).

Why It Doesn’t

So where is the problem? It usually
occurs when communication is
extremely slow (eg slow modem
lines with lots of line noise). In that
case, FEvent.WaitFor may timeout
and TWinSocketStream.Read returns
0, but that does not cancel out a
pending asynchronous ReadFile
request. Some time later all the
data may arrive. When that hap-
pens, ReadFile tries to put the
received data into Buffer. But
Buffer may not be there any more!

Examine the (intentionally over-
simplified) example in Listing 3.
Now imagine how this program
may execute: Buffer is allocated,
Sockstream.Read is called, Read
timeouts and sockstream.Read
returns with result 0, but ReadFile
is still waiting for data. Buffer is
freed and then reallocated, very
likely from the same memory area
as before. During a long computa-
tion ReadFile manages to collect
the data and stores it into Buffer.
But hey, wait, that is not the same
Buffer anymore! Data already
there will be destroyed.

So, using TWinSocketStream.Read
can cause memory overwrite, data
corruption, program malfunction
Access Violations and more.

TWinSocketStream.Write is imple-
mented in a similar manner and
can cause the same problems. Fur-
thermore, Write can send random
data to the socket and as such
presents a security threat.

And How We Can Fix It
There are two workarounds, each
with a different problem.
Thefirstoptionistoaddone line
to TWinSocketStream.Read. Just
before returning 0 (Result := 0),
the ReadFile operation can be can-
celled by cance110. Instead of:

if FEvent.WaitFor(FTimeQut) <>
wrSignaled then
Result := 0

else

32

program BadRead(sockstream: TWinSocketStream);

var
buffer: pointer;
count: longint;

begin
GetMem(buffer,1024);
sockstream.Read(buffer,1024);
FreeMem(buffer);
GetMem(buffer,1024);

{ ... some long computation involving buffer }
FreeMem(buffer);
end;

00 Above: Listing 3

[J Below: Listing 4

function TSafeWinSocketStream.Read(var Buffer; Count: longint): Tongint;

var numb,lread: integer;
begin
if swsFailed then

Result := 0
else begin
try
numb := 0;
Tread := 1;

while (1reéd > 0) and (numb < count) do begin

Tread := count-numb;

if 1read > CSmallBlockSize then

Tread := CSmallBlockSize;

if not inherited WaitForData(TimeOut) then
Tread := 0

else
Tread := inherited Read(swsBuffer”,Tread);

if 1read > 0 then begin

Move(swsBuffer~,pointer(integer(@buffer)+numb)”,1read);

numb := numb + Tread;
end;
end;
Result := numb;
except
Result := 0;

end;
swsFailed := (Result <> count);

end;
end; { TSafeWinSocketStream.Read }

we now have:

if FEvent.WaitFor(FTimeOut) <>
wrSignaled then begin
CancelIO(FSocket.SocketHandle);
Result := 0

end else

Instead of fixing the ScktComp unit it
is probably better to create a
derived class, override the Read
method, paste code from ScktComp
and make this small modification.
Choose your way but beware:
Cancell0 is not available in Win-
dows 95, only in 98 and NT 4.

A more complicated solution is
to defer freeing Buffer until Socket
is destroyed (destroying a socket
cancels all pending ReadFile opera-
tions). However, this solution is
hard to implement. So, | have cre-
ated TSafeWinSocketStream, a safe
wrapper around TWinSocketStream
that executes all read/write opera-
tions with a buffer that will be freed
only after the socket is destroyed.
It has its own drawbacks too: after
a failed operation, recovery is not
possible and all subsequent calls
to Read or Write fail without trying
to read or write.

The Delphi Magazine

TSafeWinSocketStream.Read (List-
ing 4) reads data in small blocks of
size CSmallBlockSize (defined in
the SafeWS unit) and moves suc-
cessfully read data into the main
buffer. If a read operation fails, an
internal flag is set to indicate fail-
ure and the number of successfully
read bytes is returned. The
internal buffer is freed in TSafe
WinSocketStream.Destroy, after the
socket itself is destroyed.
TSafeWinSocketStream.Write is
fixed in the same manner.

Using this derived class is
simple: replace all occurrences of
TWinSocketStream with TSafeWin
SocketStream. Your program will
work as before, just better. No
more fear of data overwrites or
Access Violations. At least not the
ones caused by TWinSocketStream.

Primoz Gabrijelcic (actually,
Primo\v{z} Gabrijel\v{c}i\v{c} for all
\TeX nicians out there) is R&D
Manager at FA Bernhardt GmbH.
He would like to be able to do on
PCs what he could do on VAXes
over 10 years ago. Meanwhile,
email him at gp@fab-online.com

Issue 44

	Blocking Sockets
	Enter TWinSocketStream
	How It Should Work
	Why It Doesn’t
	And How We Can Fix It

